

<?PastPHP ?>

Caleb Rogers

CMPT 331 - Spring 2022 - Dr. Labouseur

1. Introduction

Take a blast from the past with PastPHP! Created as a

strictly typed procedural programming language, PastPHP was

designed by combining the favorable aspects from Pascal and PHP.

The intention was to use syntax from Pascal and other languages

to improve PHP and its decaying reputation in comparison to its

adversary, JavaScript. Does PastPHP accomplish this? No, but its

resulting syntax is intriguing and fun so let’s check out in

what ways PastPHP improves, and in what ways it falters.

PastPHP is more readable than PHP with its contributions

from Pascal. The language is more verbose and easier to

understand and recognize (maybe) but having to combine both

symbols and words to make special identifiers makes the language

tedious to write. This issue of writability is compounded with

added strict type checking. Having to variable types, expected

parameter types, return types, program names, and number of

expected parameters for specified functions adds way more code

to write, but then type errors will likely never happen with

this added strictness.

While PastPHP is based on Pascal and PHP, if differs in the

following ways:

1. Functions must be defined at the top with their expected

number of parameters. This draws inspiration from Erlang.

2. Public functions are called “function” and private

functions are called “method”.

3. Types must be declared for every declared variable, for

every incoming parameter, and for every function return.

4. Global and Local scope variables should be declared

within <var > blocks.

5. Return statements receive their own <return > blocks.

6. Inputs are read with readln and outputs are performed

with writeln.

1.1 Genealogy

1.2 Hello World

1.3 Program Structure

The key organizational concepts in PastPHP are as follows:

1. PastPHP is strictly typed. This means variable types,

function and method return types and their expected

parameters all need to be declared. This allows type errors

to be caught by the compiler before reaching the

interpreter, thus saving run-time.

2. The less than “<” and greater than “>” operators are

combined with special characters or words to create

standardized identifiers. The result is unique and readable

syntax using easily recognizable identifiers and wrapped

sections within the signs.

3. Local scope variables are declared within “var” and

initialized within “<begin” “end>”.

4. Programs must declare a main method. This is done using the

“<past” “future>” identifiers.

5. Programs must be wrapped within “<?PastPHP” and “?>”.

6. Programs must be declared with “<?module(ProgramName)”.

7. Programs must declare public functions and their expected

parameter inputs.

Example Program:

<?example program continues next page

example program continued>

1.4 Types and Variables

There are two types in PastPHP: value types and reference types.

1. Value type variables directly retrieves the data stored

within that variable.

2. Reference type variables have indirect “references” to the

data stored within that variable. An example of this would

be an object variable, in which the data “referenced” is

the data nested within the properties of that object.

1.5 Visibility

In PastPHP, public visibility is determined but functions being

labeled as “function”. Private functions are then appropriately

labeled “method”.

1.6 Statements Differing from Pascal and PHP

Statement Example

Expressions

If

For

While

Comments

2. Lexical Structure

2.1 Programs

A PastPHP program uses one or more source files which are

arranged in folder structures. These files are formatted in

Unicode and utilize the .pphp file extension.

2.2 Grammers

These specifications present the syntax of the PastPHP

programming language where it differs from Pascal and PHP:

2.2.1 Lexical grammer (tokens) where PastPHP is

different from Pascal and PHP

<Variable Operator> -> $

<Assignment Operator> → :=

<Type Operator> → :

<Mathematical Operator> → + | * | / | -

<Comparison Operator> -> <=> | <!=> | << | <<= | >> | >>=

<Input> -> readln() | read()

<Output> -> writeln() | write()

2.2.2 Syntactic (“parse”) grammar where PastPHP is

different from Pascal and PHP

<Program Declaration> -> <?PastPHP | ?>

<Module Declaration> -> <?module(ModName) | ?>

<functions Declaration> -> <?functions([fun1/1, fun2/2]) | ?>

<Declarations Block> -> <var | >

<Body Block> -> <begin | end>

<Return Block> -> <return | >

<Main Method Block> -> <past | future>

2.3 Lexical Analysis

2.3.1 Comments

Two forms of comments are supported: single-line comments and

delimited comments:

1. Single-line comments start with the characters “//” and extend to

the end of the source line.

2. Delimited comments start with the characters “<//” and end with

the characters “//>”. If delimited comments span multiple lines,

each inner line must start with double slashes “//”.

3. Nested comments start with the characters “<<///” and end with

the characters “///>”. If nested comments span multiple lines,

each inner line must start with a single slash “///>>”.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals,

operators, and punctuators. White space and comments are not tokens, though

they act as separators for tokens where needed.

tokens:

- identifierkeyword

- integer-literal

- real-literal

- character-literal

- string-literal

- operator-or-punctuator

2.4.1 Keywords different from Pascal and PHP

A keyword is an identifier-like sequence of characters that is

reserved, and cannot be used as an identifier.

New keywords:

<?PastPHP?> | <?module()?> | <?functions([])?> | <var> | <begin

| end> | <return> | <past | future> | method | do done

Removed keywords:

<?php | program ProgramName | var | begin end; | do end; |

return

3. Type System

PastPHP uses a strong static type system, allowing for early

binding compile-time type checking.

3.1 Type Rules

S ⊢ e1: T

S ⊢ e2: T

T is a primitive type

S ⊢ e1 := e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a primitive type

S ⊢ e1 <=> e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a primitive type

S ⊢ e1 <!=> e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a primitive type

S ⊢ e1 << e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a primitive type

S ⊢ e1 >> e2: T

3.2 Value Types

Char: A single character.

$character: Char := “P”;

Int: A whole number.

$integer: Int := 2001;

Float: A floating point number.

$float: Float := 2.15;

Bool: A binary deciding value between true and false.

$boolean: Bool := true;

3.3 Reference Types

Str: An array of characters.

$string: Str := “PastPHP”;

Arr: A mutable, comma separated collection of values with a

variable length.

4. Example Programs

4.1 Caesar Cipher

4.2 Factorial

4.3 InsertionSort

4.4 QuickSort

<?quicksort program continues next page

quicksort program continued>

4.3 BubbleSort

