
Pipes Page 1 of 12

Pipes

Language Design

and Example Programs
Version 0.10.1

Pipes Page 2 of 12

1.Introduction

Pipes (pronounced as you would expect) is a simple, modern, and functional programming language.

Based on Lisp and R, but differing in the following ways:

1. The main approach to writing expressions and statements are through the use of pipes, creating

pipelines for data flow

2. Provides many helper functions out-of-the-box to assist in rapid data refinement

3. Contain first-class graphing and charting functionality, with an extensive API for Open-Source

developers to contribute to the condu.it package manager. Developers will be able to manage

third party libraries and tools using the “condu-cli”

Pipes Page 3 of 12

1.1.Genealogy

Pipes Page 4 of 12

1.2.Hello world

“Hello World” | out

1.3.Program structure

The key organizational concepts in Pipes are as follows:

1. Pipes: The program is a comprised of pipes

2. Refiners: Takes a single element in the pipeline in at a time and returns a single element

3. Reducers: Takes a set of elements in the pipeline and returns a single element back

4. Forks: Takes a single element and returns multiple elements back

5. Exits: Anything that terminates a pipeline, stdout, graphs, charts, assignment, etc.

This example:

// The first parameter of a refiner is always passed as the element that needs to be refined

ref doubleAndAddX(num, x) {

 num | * 2 | + x | return

}

seq(0,5) |

doubleAndAddX(5) |

fork { // A fork will return the first element to call return, if there are multiple returns

 out

 doubleAndAddX(-7) | return

} |

out

declares a refiner named doubleAndAddX, and begins the pipeline on a sequence of numbers from 0 to 5,

exclusive. A refiner takes each of the numbers in the pipeline and “refines” it, doubling it and adding 5 in

the first call. After that, the program forks, effectively creating two pipelines, which run concurrently.

One pipeline terminates immediately in an out statement, and the other calls doubleAndAddX with the

argument -7, doubling the result of the previous pipe and subtracting 7. This is then returned to the fork,

which it then terminated in yet another out. The output of this program is

5, 7, 9, 11, 13

3, 7, 11, 15, 19

1.4.Types and Variables

All data in Pipes are treated as reference types. This is because of the way programs were intended to be
created. Data is modified in place as it flows through the pipeline. This is both an optimization, and an
opinionated way of enforcing a common style among developers in the Pipes ecosystem.

Pipes Page 5 of 12

1.5.Statements Differing from Lisp and R

Statement Example

Expression statement [1,2,3,4,5] | $data

data |
+ 2 |
* 8 |
out

if statement [1,2,3,4,5] | $data

data |
% 2 |
fork { //notice the discontinuation of the pipe
 == 1 | return “odd”
 return “even”
} |
out

Assignment operator //Use $ to assign a new variable to allocate memory for

[1,2,3,4,5] | $data

Data | $x

x | out

//prints contents of x which are the same as data

Pipes Page 6 of 12

2.Lexical structure

2.1.Programs

A Pipes flow consists of one or more source files. A source file is an ordered sequence of (definitely

Unicode) characters.

Conceptually speaking, a program is interpreted using three steps:

1. First, allocates memory for any refiners

2. Runs each flow on the outermost level in parallel

3. Each flow awaits the completion of the previous pipeline step.

2.2.Grammars

This specification presents the syntax of the Pipes programming language where it differs from Lisp and

R.

2.2.1.Lexical grammar (tokens) where different from Lisp and R

<literal> = ‘.*’ or \d*

<fork> = { .* }

<variable> = \D.*

2.2.2.Syntactic (parse”) grammar where different from Lisp and R

Flow ::== <data> | <pipelines> | <exit>

Pipelines ::== <pipeline>

 ::==<pipelines> | <pipeline>

Pipeline::==<statement>

 ::==<fork>

Statement::== <operator> <literal>

Data ::== <literal>

 ::==<variable>

Exit::==out

 ::== $<variable>

Fork::== { <pipelines> }

Pipes Page 7 of 12

2.3.Lexical analysis

2.3.1.Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-line

comments start with the characters // and extend to the end of the source line. Delimited comments start

with the characters /* and end with the characters */. Delimited comments may span multiple lines.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space

and comments are not tokens, though they act as separators for tokens where needed.

tokens:

identifier
keyword
number-literal
string-literal

 array-literal
operator-or-punctuator

2.4.1.Keywords different from Lisp or R

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier

Keywords:

 fork ref red out and or return

Pipes Page 8 of 12

3.Type System

Pipes uses a strongly dynamic type system. Strongly typed means it will not convert between non-like

data types for you, i.e. “123” to 123. Dynamic typing means that typing is not determined until runtime,

similarly to JS however, this can be inferred by the IDE to provide helpful type hints and utilizes late

binding type checks.

3.1.Type Rules

The type rules for Pipes are as follows:

You have to specify type rules regardless of whether you are using a strong or weak type system. In fact,

your type rules should explicitly reflect this choice. Write type inference rules in the style found in the

Scope and Type” slide deck on our web site, an example of which is given below. Write your own type

rules; do not just include these verbatim. Be sure your type rules match the operators you chose for your

language.

S ⊢ e1 : T1 S ⊢ e1 : T S ⊢ e1 : Number S ⊢ e1 : String

S ⊢ e2 : T2 S ⊢ e2 : T S ⊢ e2 : Number S ⊢ e2: String

--

S ⊢ e1 | $e2 : T2 S ⊢ e1==e2: Boolean S ⊢ e1+e2 : Number S ⊢ e1+e2 : String

 S ⊢ e1!=e2: Boolean S ⊢ e1-e2 : Number

 S ⊢ e1<e2: Boolean S ⊢ e1*e2 : Number

 S ⊢ e1>e2: Boolean S ⊢ e1/e2 : Number

Pipes types are all reference types to encourage a uniform code style. If otherwise needed you can use the

copy() in a pipeline.

Pipes Page 9 of 12

4.Example Programs

4.1 Caesar Encrypt and Decrypt

ref shift(char, amount){
 char |

upper |
 ord |
 fork {
 >=65 and <= 90 |

- 65 |
+ amount |
% 26 |
+ 65
chr |
return
// else
chr | return

 }
}

ref encrypt(word, amount) {

word |
explode | // explode is an example of a fork
shift(amount) |
implode | // implode is an example of a reducer
return

}

ref decrypt(word, amount) {
 encrypt(word, 26 – amount) |
 return
}

“Hello World” | $plaintext
3 | $shiftAmt

encrypt(plaintext, shiftAmt) |
out

Pipes Page 10 of 12

4.2 Factorial

ref factorial(num) {
 num |
 fork {
 <= 1 | 1 | return
 factorial(num - 1) |

* num |
return

 }
}

seq(0, 10) |
factorial |
out

//Prints [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

4.3 Bubble Sort

ref swap(i, j) {
 I | $tmp
 j | i
 tmp | j
}

red bubblesort(arr) {
 arr |
 indexes |
 fork {
 [arr[.], [arr[.+1]] | swap(., .+1) | return
 return
 } |
 return arr
}

[4,2,6,7,1] |
wrap | //wrap the array to pass it as a single element to the reducer function
bubblesort |
unwrap |
out

Pipes Page 11 of 12

4.4 Text Adventure Game

In(“What’s your name?”) |
“Hello “ + . |
fork {
 Out
 In(“You are in a dark room. What do you do?”) | lowercase | return
} |
fork {
 contains (“flashlight”) | fork {
 “Good idea” | out
 in(“you see a door, now what?”)| lowercase | return
 } |
 fork {
 contains(“turn knob”) | fork {
 “Very nice” | out
 In(“You open the door and a stranger approaches”) | lowercase |
return
 }

contains(“kick”) | fork {
 “Very nice” | out
 In(“You kick the door and the stranger is angry”) |
lowercase | return

 }
 contains(“turn back”) | “Are you scared? You lose quitter…” | out
 }
 contains(“torch”) | fork {
 “The torch burnt out” | out
 in(“Now what?”)| lowercase | return
 } |
 contains(“wander”) | fork {
 “You come across a door” | out
 in(“”)| lowercase | return
 }
 contains(“wander”) | fork {
 “You come across a door” | out
 in(“”)| lowercase | return
 }
}

Pipes Page 12 of 12

4.5 Fibonacci

ref fib(num) {
 num |
 fork {
 < 2 | num | return
 fib(num – 1) |

+ fib(num – 2) |
return

 }
}

8 |
fib |
out

//Prints 21

