
Qsort - The Programming Language Page 1 of 24

Qsort

The Programming Language
Version 0.0.1

Qsort is a theoretical, high-level programming language with the assumption that quantum
computers work without flaw. Whereas in reality, and as of the year of this paper: 2023,
quantum computers are in the early stages of development. The name Qsort is a portmanteau
of quantum and sort. It is also a pun related to the classical quick sort algorithm. The
language’s name is derived from the first letter of my daughter’s name, Quinn (featured
below). She is the source of my inspiration for this programming language idea.

Qsort - The Programming Language Page 2 of 24

1. Introduction

The Qsort programming language is a fictional, high-level programming language used to communicate

with the operating system of a quantum computer. At the time of writing this paper, quantum computing

hardware is still in its infancy in terms of stable output – meaning the results from the machine are not

always what researchers expect. This paper aims to create a high-level, language design concept with the

working assumption that quantum computers are perfect and therefore, programmers can leverage this

technology to create new software.

Quantum computers use a qubit which represents either state zero or one, or any linear combination

between these states (e.g. a superposition of different states). One qubit can take the value of two classical

binary bits. N qubits is the equivalent of 2𝑁classical bits. This technology has the potential to create more

efficient looping data structures in software.

The language described throughout this paper is used as an abstraction, which is then used to

communicate with the cQASM (Common Quantum Assembly Language) assembly language. Qsort is a

procedural language that aims to simplify the task of programming applications that use object-oriented

programming concepts. The Qsort language is a virtualized environment that can be deployed on many

types of machines which makes use of the IoT cloud for binary machines, but compiles directly on

quantum hardware. The language consists of elements of the programming languages Java and Sliq, but

differs in the following ways:

1. Qsort leverages the hardware to create more efficient looping processes; arrays are considered a

primitive type.

2. Qsort supports the ease of use for linear algebra operations.

3. Qsort’s type conversion use the arrow syntax. Ie. “hello” -> [] = [“h”, “e”, “l”,”l”,”o”]

4. Qsort supports functional programming which directly supports matrix arrays.

5. Qsort supports emoji operators and variables.

Qsort - The Programming Language Page 3 of 24

1.1. Genealogy

Q: Where does your language fit into the programming language genealogy? Add your language to this

diagram to highlight your language and its ancestry.

Qsort - The Programming Language Page 4 of 24

1.2. Hello World

import QuantumCircuits, BinaryCPU

Main(){

 `prints the phrase "Hello world"

 print("Hello World");

}

1.3. Program Structure

The key organizational concepts in the Qsort programming language are as follows:

1. The main function acts as an entry point for execution and can be supported by external objects.

This is similar to Java’s “public static void main(String[] args),” however the main declaration is

simplified to “main().”

2. Functions, procedures and classes are wrapped within curly brackets to show the beginning and

end points. Object wrapping is permitted.

3. Supporting libraries can be linked using the “import” keyword.

4. Matrices and arrays are zero indexed.

5. When referring to positions of matrices, the syntax [][] is used. E.g. The top left element of a 2x2

matrix is referred to as [0][0].

6. To overwrite the value of a position, the following syntax is used: 100 @ [0][0], where 100

becomes the first element in the matrix.

7. The syntax {[][]} declares the size of an empty matrix. E.g. {[2][3]} creates a 2x3 matrix where

all values are initialized to null.

8. There are built in standard matrices that can be called and assigned to matrix variables using the

“as” keyword. E.g. integerMatrix{[4][4]} as vector^^1. This creates a 4x4 matrix in which every

element is initialized to 1.

9. Arrays of unknown sizes can be declared as {[?]} and arrays of unknown dimensions can be

initialized as {[?]|[?]}.

Qsort - The Programming Language Page 5 of 24

Example

import QuantumCircuits, BinaryCPU, Queue

Public Main(){

 📝 initialize a 2x2 matrix queue

 Public integerMatrix = new Queue <$int{[2][2]}> ;

 📝 initialize every element in the matrix to have the value of one.

 integerMatrix = integerMatrix as vector^^1; `assign unit vector to integerMatrix

📝 adds integer 5 to the third column (1st and 2nd row simultaneously)

integerMatrix.enqueue($int 5 @ [1][3] & [2][3]);

📝 removes first elements in the first column of the array

integerMatrix.dequeue();

📝 adds elements to the third column of the array

integerMatrix.enqueue($string “A” @ [0][0]);

📝 returns ([A,5], [1,5])

print(integerMatrix);

}

Protected Class Queue<T> {

 📝 creates a matrix that allows any type to be passed in matrix of unknown size and dimension

 private items: T[][] = {[?]|[?]};

 enqueue(item: T) returns void{

 this.push(item);

 }

 dequeue() returns (T or undefined) {

 return this.shift();

 }

 size() returns Integer {

 return this.length;

 }

 peek(){

 return this.items{[0][0], [1][0], … [max][0]};

 }

 }

This example declares a namespace that contains a main function that calls to an external class within the

same file. The class named ‘queue’ is instantiated in the main namespace where it is procedurally

modified. The queue class can accept any general data type passed to a matrix of unknown size and

dimension. The class supports one private field and four member methods. A new instance of the class is

initialized in the main() function.

Qsort - The Programming Language Page 6 of 24

1.4. Types and Variables

Classical variables and quantum variables in the Qsort programming language must begin with a

lower-case letter and there can be no spaces in the variable name. Variable names can be composed of

32,768 alpha numeric characters or emojis (with the exception of 👍, 👍, 📝, and 🤔). Primitive classic

types start with the $ symbol, whereas quantum types do not.

There are two ways to classify variables that are used to reference memory: value types and reference

types. Variables that are of a value type contain information about how the data is stored within the same

memory address. Whereas, variables of reference types are used to create objects by storing references to

its associated data. Reference types make it possible for two variables to reference the same object.

Reference types can be used to manipulate the referenced variables or alter copies of itself. The Qsort

language implements static scoping to bind variables to types, which aims to reduce the number of errors

at runtime. See Section 3 for details.

1.5. Visibility

Qsort uses the keywords Public, Private, and Protected as an access modifier for attributes, methods and
constructors.

1. The Public keyword makes its associated fields, methods or classes accessible to any other class within
the same file or any external file that is linked using the import keyword. The Public keyword is used to
create classes, methods and variables that are global in scope.

2. The Private keyword restricts its associated fields, methods or classes to itself. The attributes are only
accessible within the scope of its own class.

3. The Protected keyword restricts its associated fields, methods or classes to libraries that import the
class.

Qsort - The Programming Language Page 7 of 24

1.6. Statements Differing from Qsort and Java

Statement Example

Expression statement Public Main(){
 `declare a classic variable i of type int
 $int i = 123;
 `declare a classic variable j of type char
 $char j = ‘a’ ;
 array[$int | $char] k = [?];
 ``declare a quantum qubit vector variable and assign
 to the variable m’’
 qubit m = {Sqrt(1/2) |0> + #imaginary#/Sqrt(4) |1>};

}

Arrays Public Main(){
 $char a = ‘a’;
 $string b = ‘b’;
 $int c = 123;
 c -> $char;
 ``declare a classical array of unknown size that
 accepts classical integers or classical string
 variables’’
 $array[$string] c = {[?]};
 a @ d{[0]};
 b @ d{[1]};
 c @ d{[2]};
 print(d); `prints[‘a’,’b’,’c’]
 print(c{[0]}); `prints[‘a’]

 qubit e = {[|1>]};
 qubit f = {[|0>]};
 array[qubit] g = {[?][?]};
 d @ g{[0]};
 e @ g{[1]};
 print(g); `returns 2 dimension array of vectors
}

Type casting
Public Main(){
 $int i = 123;
 $char j = ‘a’ ;
 array[$string] k = {[?]};
 i -> $string;
 i @ k{[0]};
 j @ k{[1]};
 print(k); `prints[‘123’,’a’]
}

Access each element

in an array

simultaneously

Pubic Main(){
 `declare a quantum matrix of size 2x2
 array[qubit] g = {[2][2]};
 `assigns unit vector to array variable g
 g = g as vector^^1;

 print(g); `[1,1][1,1]
}

Qsort - The Programming Language Page 8 of 24

Alternative if

statement

Main(){

 $boolean b = FALSE ;

 🤔(b == 👍){
 print("true");

 }else if(b == 👎){

 print("false");
 }
}

Qsort - The Programming Language Page 9 of 24

2. Lexical Structure

2.1. Programs

A Qsort program consists of one or more source files. A source file is an ordered sequence of characters.

Logical flow of execution is specified in the main function. The scope of supporting classes, methods,

conditionals and loops are denoted by the curly bracket separators. A function that calls to another

external object is stack-dynamic; and once the external object is resolved through a dynamic link, the

execution is passed back to the original function. Subprogram parameters can only be passed by value;

and object parameters are passed by reference through a pointer to a memory address.

General overview of the compilation process:

1. The first step is to translate the source code into an intermediate code known as quantum-code.®

2. The second process of type checking involves two main phases: lexical analysis and syntactic

analysis. In lexical analysis, a stream of Unicode input characters is translated into a series of tokens.

These tokens are then further translated in syntactic analysis to produce executable code. As a part of

this process, the compiler will check for types assigned to variables.

3. External libraries and modules are linked to source code through a dynamic stack and called in logical

order.

2.2. Grammars

This specification presents the syntax of the Qsort programming language and where it differs from Java

and Q#.

2.2.1. Lexical grammar (tokens) where Qsort differs from Java and Q#

Regular Expressions includes Java arithmetic, comparison, logical and assignment
operators however,
 the following have been added for use in a different capacity:

{,},[,],|,&,?,@,…,.

1. Array operators:

 Basic array operators:[?],[?]|[?],[?]|[?]|[?],[?]&[?],[?]&[?]&[?],{[][]}

2. Array mathematics operators:

 amendments to Array mathematics operators: -> T* (transpose), {T} (tensor

product), R* (reverse), I* (inner product), {I} identity matrix, E* (eigenvalue), {E} (eigenvectors)

3. Emoji operators:

 Basic emoji operators: , , ,

4. Literal operators:

 amendments to literal operators: as, to

5. Typecast operators:

 amendments to typecast operators: ->

Qsort - The Programming Language Page 10 of 24

2.2.2. Syntactic (parse”) grammar where Qsort differs from Java and Q#

1. <array> ➞ <vector> | <matrix> | <array>

2. <matrix> ➞ <vector><vector>

3. <vector>➞ <type><dimension>

4. <type> ➞ <qubit> | <qLong> | <qFloat> | <qDouble>

5. <dimension> ➞ < qubitRange >| <qLongRange> | <qFloatRange> | <qDoubleRange>

6. < qubitRange >➞ <(n)|0> + (1-n|1> >

7. <qLongRange> ➞< −264 to ((264) − 1)>

8. <qFloatRange> ➞< −2128 to ((2128) − 1)>

9. <qDoubleRange>➞ < −2128 to ((2128) − 1)>

10. <n>➞ <(0 => n <= 1)>

Qsort - The Programming Language Page 11 of 24

2.3. Lexical Analysis

2.3.1. Comments

There are a few supported forms to comment codes. First, the note emoji “📝” and the backtick

typographical mark (`) can be used as a Single-line comment which the complier will not execute any

code that resides on the same source line. Delimited comments start and end the characters `` and can

span across several lines of code.

2.4. Tokens

There are several kinds of tokens which will be mentioned in this section. White space and comments are

not tokens, although they act as separators for tokens where needed.

tokens:

classical identifiers

quantum identifiers
keyword

integer-literal

real-literal

character-literal

string-literal

operator-or-punctuator
emojis

This following is a list of valid keywords:

🤔 $float protected

@ $int public

-> $long qDouble

… $short qFloat

array[] else qLong

array[][] export qubit

array[][][] for returns

as foreach scalar

break if singleton

class import string

$boolean map this

$byte new void

$char null while

$double private vector^^n

Qsort - The Programming Language Page 12 of 24

2.4.1. Keywords different from Java or Q#

A keyword is an identifier-like sequence of characters that is reserved and cannot be used as an identifier

except when prefaced by the \ escape sequence.

New keywords:
@ vector^^n qubit qLong qDouble

-> qFloat scalar array[][] array[][][]

returns

Removed keywords:

internal Stringbuilder

Qsort - The Programming Language Page 13 of 24

3. Type System

As stated earlier, the Qsort programming language implements an early binding compile-time, type

checking system. The language implements a strong static type system that aims to catch errors during

the compilation process rather than at the runtime. There is a strong emphasis on type conversions.

Primitive types can easily be converted to a larger type. Narrowing primitive and reference types can lead

to a loss of precision. The complier will warn the user if a conversion is unsafe, such as an array to a

vector.

3.1. Type Rules

The type rules for Qsort are as follows:

Boolean Literals:

⊢ true: boolean ⊢ false: boolean

⊢ 👍: boolean ⊢ 👎: boolean

⊢ |0> : boolean ⊢ |1> : boolean

Qubit Literal:

⊢ e1 : qubit state ⊢ e1 : qubit state
⊢ e2 : qubit state ⊢ e2 : qubit state

⊢ e1 + e2 : qubit state ⊢ e1 - e2 : qubit state

⊢ e1 : qubit state ⊢ e1 : qubit state

⊢ e2 : qubit state ⊢ e2 : qubit state

⊢ e1 * e2 : qubit state ⊢ e1 / e2 : qubit state

⊢ e1 : qubit state ⊢ e1 : qubit state

⊢ e2 : qubit state ⊢ e2 : qubit state

⊢ e1 ^ e2 : qubit state ⊢ e1 √ e2 : qubit state

Qsort - The Programming Language Page 14 of 24

Literals Addition:

⊢ e1 : T
⊢ e2 : T
T is a primitive type

⊢e1 + e2 :T

Assignment:

⊢ e1 : T

⊢ e2 : T
T is a primitive
type

⊢e1 =e2 :T

Comparison:

⊢ e1 : T ⊢ e1 : T

⊢ e2 : T ⊢ e2 : T

T is a primitive type T is a primitive type

⊢e1 ==e2 :boolean ⊢e1 !=e2 :boolean

⊢ e1 : T ⊢ e1 : T
⊢ e2 : T ⊢ e2 : T

T is a primitive type T is a primitive type

⊢e1 >e2 :boolean ⊢e1 <e2 :boolean

⊢ e1 : T ⊢ e1 : T
⊢ e2 : T ⊢ e2 : T

T is a primitive type T is a primitive type

⊢e1 >= e2 :boolean ⊢e1 >=e2 :boolean

Conditional Rule:

{P∧ c}S1{Q},{P∧ ¬c}S2{Q} {P∧ c}S1{Q},{P∧ ¬c}S2{Q}

{P} IF (c) {S1}ELSE{S2} {Q} {P} 🤔 (c) {S1}ELSE {S2} {Q}

Qsort - The Programming Language Page 15 of 24

Type Casting:

⊢ e1 : qubit state ⊢ e1 : scalar

⊢ e2 : $boolean ⊢ e2 : vector^^n

⊢e1 -> e2 : $boolean ⊢e1 -> e2 : vector^^n

⊢ e1 : qubit state
⊢ e2 : boolean

⊢e1 -> e2 : boolean {or} ⊢e2 -> e1 : qubit state

⊢ e1 : array[] ⊢ e1 : array[][]
⊢ e2 : T ⊢ e2 : T
T is a primitive type T is a primitive type

⊢e1 -> e2 : T ⊢e1 -> e2 : T

⊢ e1 : array[][][]
⊢ e2 : T ⊢ e1 : $char
T is a primitive type ⊢ e2 : $string

⊢e1 -> e2 : T ⊢e1 -> e2 : $string

⊢ e1 : $byte
⊢ e2 : $short
⊢ e3 : $int
⊢ e4 : $long
⊢ e5 : double
⊢ e6 : $qLong
⊢ e7: $qDouble

⊢e1 -> e2 -> e3 -> e4 -> e5 -> e6 -> e7 : qDouble

Qsort - The Programming Language Page 16 of 24

3.2. Value types (How Qsort differs from Q# and Java)

One of the biggest differences in this language is that quantum arrays are treated as primitive types since

information can be process simultaneously. This is a result of the hardware having the ability to pass

information between quantum registers and classical registers. Variable types can be easily type casted

with the arrow operator -> (Type casting takes the form: variable of type -> type). This flexibility allows

any object comprised of different types to be quickly modified. There is a hierarchy to type casting, i.e. an

array cannot be converted to a vector, a string cannot be converted to a char, etc…

Qsort supports the following classical computer primitive types:

1. $boolean (0 or 1; true or false; 👍or 👎)

2. $byte (has an inclusive memory range of -128 to 127)

3. $short (has an inclusive memory range of -32,768 to 32,767)

4. $int (has an inclusive memory range of -2,147,483,648 to 2,147,483,647)

5. $long (has an inclusive memory range of -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

6. $char (has an inclusive memory range of '\u00000000' to '\uffffffff' or 0 to 4,294,967,295)

7. $float (has an inclusive memory range of −232 to ((232) − 1))
8. $double (has an inclusive memory range of −232 to ((232) − 1)))
9. $string

Qsort also supports the following quantum primitive types:

1. qubit (allows access to the states and positions of the states)

2. singleton (a type that only contains one element)

3. boolean (amplitude of |0> and |1> state)

4. qLong (has an inclusive memory range of −264 to ((264) − 1))
5. qDouble (has an inclusive memory range of −2128 to ((2128) − 1))
6. qFloat (has an inclusive memory range of −2128 to ((2128) − 1))
7. array[] (dynamic length array)

8. array[][] (2-D dynamic length array)

9. array[][][] (3-D length array)

10. scalar (quantity magnitude)

11. vector^^n (vector of length n)

3.3. Reference types (How Qsort differs from Q# and Java)

Reference types are store as a pointer to one memory location or possibly, many memory locations.

Memory locations can be either quantum registers or classical registers, which allows copies of

references to be easily manipulated.

Qsort - The Programming Language Page 17 of 24

4. Example Programs

Six (6) example programs that demonstrate language use:

1. Caesar Cipher encrypt

import QuantumCircuits, BinaryCPU, Encrypt;

public Main(){

 $string message = "Hello World";

 $int key = 4;

 print("encrypted message: " + Encrypt.encrypt(message, key));

}

 Public Class Encrypt(){

 encrypt($string message, $int key) returns $string{

`create an empty string array

 new array[$string] stringArray = {[?]};

 `typecase message to the stringArray variable above

 message -> array[$string] stringArray;

 `typecast the stringArray into an array of ascii values.

 stringArray -> (array[$int] stringToAsciiValue).toAscii();

 `apply this formula to each element in the array

 stringToAsciiValue as ((stringToAsciiValue.toUpper() - 65) % 26 + 65)

 return stringToAsciiValue -> $string;

 }

Qsort - The Programming Language Page 18 of 24

2. Caesar Cipher decrypt

import QuantumCircuits, BinaryCPU, Decrypt;

public Main(){

 $string message = "Hello World";

 $int key = 4;

 print("decrypted message: " + Decrypt.decrypt(message, key));

}

Public Class Decrypt(){

 decrypt($string message, $int key) returns $string{

 `create an empty string array

 new array[$string] stringArray = {[?]};

 `typecase message to the stringArray variable above

 message -> array[$string] stringArray;

 `typecast the stringArray into an array of ascii value.

 stringArray -> (array[$int] stringToAsciiValue).toAscii();

 `accounts for negatives

 🤔(key < 0){

 key = ((key+26)%26)

 }

 `change the shift value to represent a reversal

 key = (26 - (key % 26));

 `apply this formula to each element in the array

 stringToAsciiValue as ((stringToAsciiValue.toUpper() - 65) % 26 + 65);

 return (stringToAsciiValue -> $string);

 }

Qsort - The Programming Language Page 19 of 24

3. Factorial – This is one of the coolest algorithms to think about because the hardware

could potentially handle factorial problems more efficiently than a classical computer.

The hardware can leverage three qubits by first initializing the circuit using a Hadamard

gate, and then utilizing controlled swap gate (cswap) that swaps the states of two qubits if

a third qubit is in the state |1>. Shor’s algorithm and the Quantum Fourier Transform

(QFT) algorithm leverage this concept to make ease of factorization. See an example of

the implementation in assembly written below.

` Computes factorial using quantum registers

Import QuantumCircuits, QuantumFactorial;

Public Main($int m) returns $int {

 ` Measure the qubits result and type cast to classical integer

 return (m -> QuantumFactorial(q, c));

}

Public QuantumFactorial(array[qubits] qu, $int n) returns singleton {

 `Apply the Hadamard gate to all qubit

 qu[n] as Hadamard;

 ` Apply the conditional phase-shift gates

 qu = QuantumCircuits.controlledPhaseShift(PI / ((2, j -n)^ [q[n]]) , q[n]);

 ` Measure the qubits and store the result in the classical register

 return qu -> singleton qu;

}

Qsort - The Programming Language Page 20 of 24

4. Quantum Fourier Transform

import QuantumCircuits, BinaryCPU,

Public QFT ($int numberOfQubits, array[Qubits] qbits) returns singleton {

 for ($int i = 0; i < numberOfQubits – 1; i++) {

 qbits [i] as Hadamard; `apply Hadamard gate

 for ($int j = i + 1; j < numberOfQubits - 1) {

 `Apply controlled phase-shift gate to qubit j

 (1.0 / (2 ^ (j – i)), [qbits [j]], qbits [i]) as CPhaseGate; `apply Controlled Phase

Shift

 }

 }

 ` Reverse the order of qubits in the register

 for ($int i = 0; i < (numberOfQubits / 2 – 1); i++) {

 QuantumCircuits.swapgate(qbits [i], qbits[numberOfQubits - i - 1]).;

 }

}

Qsort - The Programming Language Page 21 of 24

5. Greedy Merge

import QuantumCircuits, BinaryCPU, MergeSort, Queue, Quicksort;

Public Main(){

 array[$int] testlists = {[3, 5, 9, 11, 16, 18, 20]};

 print("The minimum cost to merge testlists[] is "+ merge(testlists));

 `Expected output: 216

`supporting method

Public merge(array[$int] lists) returns $int

 📝 Input: Assume lists in lists[] are sorted already

 📝 The resulting list size = lists[i] + lists[j]

 📝 Output: the minimum cost of merging all lists in lists[]

 array[$int] arr = {[?]};

 array[$int] mergedCost = {[?]};

 `copy the int array to the array list
 arr = lists; `copies a copy of array to adjacent memory location

 `size is a representation of the size of a file stored as an element in an array

 $int size = 0;

 `so long as there are more than 2 elements...

 while(arr.length >= 2){

 ` basically, sum the lowest two element listed in ascending order

 size = arr[0] + arr.[1];

 `then remove the elements from the array list

 arr.dequeue();

 arr.dequeue();

 `add back the sum combined file size (s1+s2)

 arr.enqueue(size);

 `then sort the array list

 Quicksort.qSort(arr);

 `add the costs of each merger to a separate array

 mergedCost.enqueue(size);

 }

 `the combined total cost of the merged cost array is the total optimal cost

 $int totalCost = 0;

 for(int k=0; k < mergedCost.length; k++){

 `sum all the values in the array

 totalCost = mergedCost.get(k) + totalCost;

 }

 return totalCost;

 }

Qsort - The Programming Language Page 22 of 24

6. Quick Sort (Qsort)

import QuantumCircuits, BinaryCPU, Quicksort;

Public Class Program6 {

 Public Main(){

 ` Test cases

 array[$int] testarray1 = {[2, 4, 1, 6, 3, 7, 8]};

 array[$int] testarray2 = {[6, 3, 4, 5, 1]};

 quicksort_2pivots(testarray1, 0, testarray1.length-1);

 quicksort_2pivots(testarray2, 0, testarray2.length-1);

 `Output sorted arrays

 testarray1[$int] -> $string testarray1;

 print(testarray1 + “\n”);

 testarray2[$int] -> $string testarray2;

 print(testarray2 + “\n”);

 }`main

Public partition(array[$int] A, $int s, $int e) returns $int{

 $int pivot = A[s];

 $int i = s + 1;

 $int j = e;

 while (i<=j){

 while (i < e & A[i] < pivot){

 i = i + 1;

 }

 while(j > s & A[j] >= pivot){

 j = j - 1;

 }

 if (i >= j){

 break;

 }

 QuantumCircuits.cswap(A, i, j);

}

 QuantumCircuits.cswap(A, s, j);

 return j;

}

Qsort - The Programming Language Page 23 of 24

 Public quicksort(array[$int] A, $int s, $int e){

 🤔 (s < e){

 $int p = partition(A, s, e);

 quicksort(A, s, p-1);

 quicksort(A, p+1, e);

 }

 }

Public partition_2pivots(array[$int] A, $int s, $int e) returns int[]{

 📝 Randomly select 2 pivots and partition the array

 📝 Return the position of 2 pivots after partition

 📝 Complete the function

 📝 Feel free to change the return type and parameters

 $int pivot1 = QuantumCircuits.random(e-s)+s;

 $int pivot2 = QuantumCircuits.random(e-s)+s;

 if(pivot1 > pivot2){

 QuantumCircuits.swap(pivot1, pivot2);

 }

 ` adapted from: https://www.geeksforgeeks.org/quicksort-using-random-pivoting/

 $int i = s+1;

 $int j = e-1;

 $int temp2 = A[pivot1];

 A[pivot1]= A[s];

 A[s] = temp2;

 $int temp3 = A[pivot2];

 A[pivot2]= A[e];

 A[e] = temp3;

 $int p = A[s];

 $int q = A[e];

 while (i <= j){

 ` If elements are less than the left pivot

 🤔 (A[i] < p)

 {

 QuantumCircuits.swap(A, i, k);

 k++;

 }

Qsort - The Programming Language Page 24 of 24

 ` If elements are greater than or equal to the right pivot

 else if (A[i] >= q){

 while (A[j] > q && i < j){

 j--;

 }

 QuantumCircuits.swap (A, i, j);

 j = j- 1;

 if (A[i] < p){

 QuantumCircuits.swap (A, i, k);

 k++;

 }

 }

 i= i +1;

 }

 ` Bring pivots to their appropriate positions.

 QuantumCircuits.swap (A, s, k);

 QuantumCircuits.swap (A, e, j);

 /* Returning the indices of the pivots because we cannot return two elements from a

function, we do that using an array */

 return new array[int] {[k, j]};

}

 Public quicksort_2pivots(array[$int] A, $int s, $int e){

 `quicksort that uses the modified partition_2pivots()

 🤔 (s < e){

 int[] p;

 p = partition_2pivots(A, s, e);

 ` adaptation of : https://www.geeksforgeeks.org/dual-pivot-quicksort/

 /* p[] stores left pivot and right pivot. p[0] means left pivot and p[1] means right

pivot */

 quicksort_2pivots(A, s, p[0] - 1); ` {2, 4, 1, 6, 3, 7, 8};

 quicksort_2pivots(A, p[0] + 1, p[1] - 1);

 quicksort_2pivots(A, p[1]+1, e);

 }

 }

}//Program6

	1. Introduction
	1.1. Genealogy
	1.2. Hello World
	1.3. Program Structure
	1.4. Types and Variables
	1.5. Visibility
	1.6. Statements Differing from Qsort and Java

	2. Lexical Structure
	2.1. Programs
	2.2. Grammars
	2.2.1. Lexical grammar (tokens) where Qsort differs from Java and Q#
	2.2.2. Syntactic (“parse”) grammar where Qsort differs from Java and Q#

	2.3. Lexical Analysis
	2.3.1. Comments

	2.4. Tokens
	2.4.1. Keywords different from Java or Q#

	3. Type System
	3.1. Type Rules
	3.2. Value types (How Qsort differs from Q# and Java)
	3.3. Reference types (How Qsort differs from Q# and Java)

	4. Example Programs

