Complete
Programming in

QueensScript

QueenSeript

QueenScript is a playful, expressive and typesafe modern programming language that descends
from Scala and Swift. It combines the functional aspects of Scala with Swift’s safety features and
modern syntax, all wrapped in a girlypop, Gen Z meme culture aesthetic. The design philosophy
behind this language is “strongly typed, fabulously dressed”. It brings together the expressive power
of Scala and the clean syntax of Swift to create a language that is as powerful as it is stylish,
delivering on brains and beauty in one! It is also meant to maintain the aspects that we love about
languages such as readability, writability and maintainability while using popular and well
structured programming concepts from OOP to fundamental requirements of sequence,
alternation and repetition. Although it is based on these two languages, it differs in the following

ways:

*

*
*
*

1. Introduction

It has a rebranded core syntax: Many of the core constructs found in these languages like
class, interface, package, private and more are reimagined with modern, on-theme names.
It has a themed type system: It is strongly-typed, however it uses expressive, slang-based
type aliasing. For example, the ¥§ emoji represents a unit return, replacing () or Void.

It has stylized access control: Visibility modifiers are renamed for readability and witty
humor.

Sassy Pattern Matching: It enhances pattern matching by allowing expressive matches
that read like natural speech, delivering on readability. Overall, the readability makes it
easier and more fun for beginners that want to learn a programming language with
personality.

It has Gen-Z Developer Culture Integration: The entire language is rooted in Gen-Z
culture with meme-references and general slang that makes it uniquely suited for
educational tools, creator-focused projects, and more.

1. Introduction

2.Lexical Structure

3. Type System

4. Example Programs

Table of Confents

1.1.Genealogy
1.2. Hello World

1.3. Program Structure

1.4. Types and Variables

1.5. Visibility

1.6. Statements differing from Scala and Swift

NV 0 0 NN ki N

2.1. Programs

2.2. Grammars

2.2.1 Lexical grammar (tokens) where different from Scala and Swift

2.2.2. Syntactic (“parse”) grammar where different from Scala and Swift

2.3. Lexical Analysis

2.3.1. Comments

2.4. Tokens

2.4.1. Keywords different from Scala and Swift

3.1. Type Rules

3.2. Value Types

3.3. Reference Types

4.1 & 4.2 Caesar Cipher:

4.3. Factorial:

4.4, Merge Sort

4.5 Binary Search Tree:

4.6 Pattern Matching:

T N N N N S S S N R = S Y
O © N N OO0t tn AN W W W W R, O O

1.1.Genealogy

The diagram shows where QueenScript fits into the programming language genealogy:

1957 Fortran| —

58

Fortran Il —=

Fortran IV —> ¢

Prolog e

4
Fortran 77—>¢

MODULA-

Fortran 90— ¢

Fortran 95 ¢

Fortran 2003 ¢

Fortran 2008

B

4

I

ALGOL W

E\~I ALGOL 58

ALGOL 60

PMODULA-2

SIMULA 67
ALGOL 68

® APL

FLOW-MATIC

Ruby 1.

®Oberon
\Qil C (C89)
»ePython
e lua PHPJ Java
¢Ada 95 Ruby
Javascript
‘iC99
Visual Bpasic.NET ¢
Ruby 1.8 gSealali, ;5.0
® Ada 2005

Java 6.0 C# 2.0
C# 3.0
C# 4.0

Java 7.0
e C#5.0

¢ Objective-C

Python 2.0

Python 3.0

¥ Swift

QueenScripte

1.2. Hello World

realm Greetings {
main() -> Nothing {

print("Hey bestie!
(¥ 0 [

1.3. Program Structure

The key organizational concepts in QueenScript are as follows:

Every program must define a main() in a realm.

Any blueprint can implement a vibe.

A main() function must return nothing.

Any blueprint can have either core, lowkey, gatekeep or public variables (which is the
default).

5. All source code files should contain a.queen file extension.

PO

1 App {

entifiable {
iisplayID() -> Nothing

hash(input:
"hashed:\(input)"

t Admin ext

di ayID() -> Nothing {
yrint("Admin: \(username) @ ")

Login success? \(1("wrongpass"))")
"Login success? \(n("gossip"))")

.grantPrivilege("ban")
"Admin Privileges: \(admin.privi

The realm App encapsulates everything within an App module. Within that, there is the blueprint
for an account and an admin. Account also implements the vibe Identifiable interface, this
language’s trait/protocol. Admin then inherits Account and overrides displaylD(). The app has

multiple members such as core variables like username, lowkey, public, mutual and gatekeep
variables. Main() is the entry point, where every program must define a main()in a realm. It’s fine
to be inside whichever realm as long as it can still be reached by the compiler. Additionally, it has
returned nothing, which is a keyword in this language. Vibes are interfaces and define shared
behavior.

1.4. Types and Variables

There are two kinds of types in QueenScript: value types and reference types. Variables of value
types directly contain their data whereas variables of reference types store references to their
data, the latter being known as objects. With reference types, it is possible for two variables to
reference the same object and thus possible for operations on one variable to affect the object
referenced by the other variable. See Section 3 for details

1.5. Visibility

QueenScript has four choices for access modifiers which control the visibility and accessibility of
classes, methods and members within a program. Since Queenscript follows OOP, they help
encapsulate the code and manage how different parts of the program interact.

// Public access (default)
main vibe Profile {

/...
}

// Private access (only within the vibe)
gatekeep Integer password = 1234

// Protected access (within vibe and sub-vibes)
lowkey String nickname = "silverback"

// Package-private (only within the same realm)
mutuals String sharedinfo = "only for the group"

1.6. Statements differing from Scala and Swift

STATEMENT EXAMPLE

Forloop — i ..<5 4
print("Looping: \(1)
&")

While |00p — var count =

count < {
("Counting: \(count) ¥®")

count +=
b

o
result == "Ate your exams up!" {
print("%+ Amazing job")
If-else — } {

print("Try again, queen")

s

match outfit {
"glam" => print("She’s serving looks ")
Match case —

"casual" => print("Comfy and chill")
_ => print("Unexpected but iconic")

Function call + Optional —

= Maybe<String>.real("Red Foxes & ")
)

2.Lexical Structure

2.1. Programs

QueenScript source code is written in files with an extension of “[filename].queen”. A source file is
an ordered sequence of Unicode characters. In each file, there can be more than one realm, which

are comparable to Swift modules or Scala packages. Since this is a language for programmers, a
structured organization could look like

Project/

|

|— main.queen <- Entry point with main() function
|—Auth.queen <- Contains blueprint account, admin, and more
|— Util.queen <- Helpers and reusable vibes

|—— DSA.queen <- Any helpful data structure and algorithms
|— Metrics.queen <- Libraries (such as GirlMath (internet joke)

From this structure, compilation would occur in three phases:
1. Front-End: .queen files would be validated using a lexer and then parsed using our BNF
grammar. Then, an Abstract Syntax Tree would be created as long as there were no type

errors, undefined functions or references, access violations and also respects visibility
modifiers.

2. Intermediate Representation (IR): The AST would be compiled into an IR layer respecting
modifiers, simplifying type-sage instructions, and performing optimizations such as dead
code elimination.

3. Back-End: The IR would be converted to bytecode, or native code for the target platform,
provide any error messages and output a.qtc bytecode file or run the main() vibe.

2.2. Grammars

This specification presents the syntax of QueenScript where it differs from Scala and Swift.

2.2.1 Lexical grammar (tokens) where different from Scala and Swift

IDENTIFIER

KEYWORD

OPERATOR

DELIMITER

INT_LITERAL
FLOAT_LITERAL
STRING_LITERAL
BOOLEAN_LITERAL
EMOJI_LITERAL
OPTIONAL_LITERAL

LINE_COMMENT
BLOCK_COMMENT

WHITESPACE

=[a-zA-Z_] [a-zZA-Z0-9_]*

"blueprint" | "vibe" | "func" | "realm" | "core" | "gatekeep" | "lowkey" | "mutuals" |
"viral"| "public"

| "init" | "main" | "match" | "case" | "else" | "if" | "for" | "in" | "while" | "return"

| "try" | "catch" | "finally" | "override" | "Nothing" | "Ghost" | "Maybe"

ST]

==[0-9]+
1=[0-9]+ "' [0-9]+
::= ll\llll (~["\\] | ll\\ll .)* II\IIII

= "true" | "false"

::= n ?Ell

="ghost" | "real"

=" ~[\n\r]* // single line comment

RERVAR AW A // multiline comment

== [\t\r\n]+ // (ignored outside of string literals)

10

2.2.2. Syntactic (“parse”) grammar where different from Scala and Swift

<program> u={<realm_decl>}
<realm_decl> :="realm" <identifier>"{" { <decl>}"}"
<decl> .= <blueprint_decl>
| <vibe_decl>
| <func_decl>
| <var_decl>
<blueprint_decl> ==["main"] "blueprint" <identifier> [":" <type>] "{" { <member_decl> }"}"
<vibe_decl> =="vibe" <identifier> "{" { <func_decl> }"}"
<func_decl> = "func" <identifier>"(" [<params>]")" "->" <type> "{" <block> "}"
<params> i=<param>{" <param>}
<param> = <identifier>":" <type>
<var_decl> ::= <visibility> <type> <identifier> ["=" <expr>]
<visibility> :="core"
| "viral"
| "lowkey"
| "gatekeep"
| "mutuals"

| "public" // default

<type> =="Int" | "Float" | "Bool" | "String"
| "Nothing" | "Ghost"

| nMayben nen <type> >
| <identifier>

<block> u={<stmt>}

<stmt> = <var_decl>";
| <assign_stmt>";"
| <if_stmt>
| <while_stmt>
| <for_stmt>
| <match_stmt>
| <return_stmt>
| <try_stmt>

| <expr_stmt>";

11

<assign_stmt>
<if_stmt>
<while_stmt>

<for_stmt>

<match_stmt>
<block>1"}"

<try_stmt>
<block>]

<return_stmt>
<expr_stmt>

<expr>

<args>
<binary_op>

<literal>

<pattern>

<identifier>
<int_literal>
<float_literal>
<string_literal>

;= <identifier> "=" <expr>

"if" <expr> <block> ["else" <block>]
"while" <expr> <block>
"for" <identifier> "in" <expr> <block>

llmatchll <eXpr> Il{ll { "Case“ <pattern> ll=>ll <b|0ck> } [Ilcasell nn Il=>ll

"try" <block> "catch" <identifier>"" <identifier> <block> ["finally"

"return" <expr>";
<expr>

= <literal>
| <identifier>

| <expr>"" <identifier>

| <expr>"" <identifier>"(" [<args>]1")"
| <eXpr> II(II [<args>] II)II

| <expr> <binary_op> <expr>

| II(II <eXpr> Il)ll

= <expr>{" <expr>}

= II+I| | ll_ll | nxn | II/II | I|==II II!=II | I|<Il | II>II | Il<=ll | |l>=ll ll&&ll | lI||II

= <int_literal>
| <float_literal>
| <string_literal>

| "true" | "false"
| ll.ghostll | Il.realll Il(ll <expr> II)II
| n _'\;E"

::= <literal> | <identifier>

.= letter { letter | digit | "_"}
= digit { digit }

o= digit { digit } "" digit { digit }
="\""{ character } "\""

12

2.3.1. Comments

2.3. Lexical Analysis

Similarly to most programming languages, two forms of comments are supported: single-line comments and
delimited comments. Single-line comments start with the characters // and extend to the end of the source
line. Delimited comments start with the characters /* and end with the characters */. Delimited comments

may span multiple lines. Comments do not nest.

2.4. Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, although they act as separators for tokens where needed.

Tokens:
identifier
keyword

real-literal

string-literal

% ot b %t %

integer-literal
character-literal

operator-or-punctuator

2.4.1. Keywords different from Scala and Swift

New keywords

Removed / Replaced keywords

link

core
lowkey
viral
Maybe<T>
real
ghost
realm
blueprint
vibe
ghost
nothing

g g i o o b b b b o b

ref
const
private
Static
Optional<T>
some
none
package
class
Interface
null

void

g g i o o b b b b o b

13

3. Type System

Just like its predecessors, QueenScript is a statically, strongly typed language and it uses type
inference in order to determine what the initial type of variables and cores (constants) are. This
means that it performs early binding compile-type checking. Essentially, it compiles to machine
code and uses an LLVM-based compiler. Therefore, the compiler will analyze each of the types
being used in the code and make sure that the code is correctly using those types, otherwise, one
may get this CompilationError:

"Expected a Float, got String instead. Fix it. (™"

(The compiler is a little sassy...)

There are also runtime errors that can be caught such as the one every developer encounters once
in a while, an index out of bounds or off by one.

"Index out of bounds? So is your audacity. <"

3.1. Type Rules

The type rules for QueenScript are as follows:

Srel: T
Sre2: T
T is a primitive type

Stel=¢e2: T

Srel: T
Sre2: T
T is a primitive type

S el <e2:bool

Stel: Int
St+e2: Int

Stel + e2:Int

Stel: Int
S+e2: Int

Srel: T
Sre2: T
T is a primitive type

S+el ==e¢2: bool

Srel: T
Sre2: T
T is a primitive type

S el >e2: bool

Stel: Int
St+e2: Int

Stel * e2: Int

S +el: String
S +e2: Int

Srel: T
Sre2: T
T is a primitive type

St+el !=e2: bool

S +el: String
S - e2: String

St+el + e2: String

Stel: Int
St+e2: Int

Stel- e2:Int

Stel: T
SHe2: T

14

T is a value type

St+el/ e2: Float S el + e2: String
Stel?:e2: T

QueenScript has two categories for its types, value types and reference types. The important
distinction between these two is that value types hold actual data whereas reference types
contain a reference to data’s location within memory. This language borrows similar types
between Scala and Swift but with its own unique flair.

3.2. Value Types

The value types and especially primitive types (Int, Float, Bool), String, Char are all value types
that this language are all inherited from their descendents. The primary different ones are:

- “Ghost” (as in ghosting) is similar to “Null” which is of the literal type Null.
= “Maybe <T>"is similar to “Optional <T>" in Swift which represents either a wrapped value
or the absence of a value.

3.3. Reference Types

These are some different reference types in this language:
- ‘blueprint’ is similar to a‘class’ in both Scala and Swift. It is quite literally a blueprint that
you can use to build objects, and conforms to inheritance found in OOP.
= ‘vibe’is similar to an ‘interface’ which enforces certain properties on an object (blueprint).

15

4. Example Programs

4.1 & 4.2 Caesar Cipher:

[J
realm CipherKit {

blueprint CaesarCipher {
core shift

(shift:) {
.shift =

code

code

3 Lt += C code + shift) %) +
code >=

+ shift) %) +

result += (char)

result

decrypt(cipherte

result =
ciphertext {

> = char.untico
code < {
.fromUnicode(((- shift
code >= &

t += .fromUnico e - shift

result

main() -> Nothing {
cipher arCipher(s t: 3)
encryp cipher t("Hello, World!")
print("Encrypted: \ pted

decrypted = cipher.decrypt(encrypted)

~int("Decrypted: \(decrypted)")

[
vy

16

4.3. Factorial:

4.4. Merge Sort

realm P

n * factorial(n - 1)

main() -> Nothing {
result = torial(5)
print("Factorial: \(result)")
[)

ce(0, middle)
ice(mid, list

main() -> Nothing {

orint("

)
.size))

17

4.5 Binary Search Tree:

realm Trees {
blueprint Node {
core Lue
Maybe<Node>
Maybe<Node>

.ghost

blueprint
Maybe<Node> root = .ghost
) -> Nothing {

insert(value:
value)

root = insertNode(root,
v

insertNode(current: be<Node>, value:) -> Node
current .ghost {

Node(value: value)

value < current.value {
current.left = insertNode(current.left,

value)

{

current.right =

insertNode(current.right, value)

current

e<Node>) -> Nothing {

pTLH1IHUrdéI(M
print("\(node.

[

AR

ntInOrder(tre
14

18

4.6 Pattern Matching:

realm Vibes {
analyzeMood(status:) -> Nothing {
match status {
"Slay" => print("Mood: You ate that! '+ ")
"Mid" => print("Mood: It's giving
averagedje "Flop" => print("Mood: Girl, try again")
=> print("Mood: Undefined energy")

}

main() -> Nothing {
analyzeMood("Slay")

19

