

QueenScript
1. Introduction

QueenScript is a playful, expressive and typesafe modern programming language that descends

from Scala and Swift. It combines the functional aspects of Scala with Swift’s safety features and

modern syntax, all wrapped in a girlypop, Gen Z meme culture aesthetic. The design philosophy

behind this language is “strongly typed, fabulously dressed”. It brings together the expressive power

of Scala and the clean syntax of Swift to create a language that is as powerful as it is stylish,

delivering on brains and beauty in one! It is also meant to maintain the aspects that we love about

languages such as readability, writability and maintainability while using popular and well

structured programming concepts from OOP to fundamental requirements of sequence,

alternation and repetition. Although it is based on these two languages, it differs in the following

ways:

★ It has a rebranded core syntax: Many of the core constructs found in these languages like

class, interface, package, private and more are reimagined with modern, on-theme names.

★ It has a themed type system: It is strongly-typed, however it uses expressive, slang-based

type aliasing. For example, the emoji represents a unit return, replacing () or Void.

★ It has stylized access control: Visibility modifiers are renamed for readability and witty

humor.

★ Sassy Pattern Matching: It enhances pattern matching by allowing expressive matches

that read like natural speech, delivering on readability. Overall, the readability makes it

easier and more fun for beginners that want to learn a programming language with

personality.

★ It has Gen-Z Developer Culture Integration: The entire language is rooted in Gen-Z

culture with meme-references and general slang that makes it uniquely suited for

educational tools, creator-focused projects, and more.

2

Table of Contents

1. Introduction... 2

1.1.Genealogy... 4

1.2. Hello World... 5

1.3. Program Structure..5

1.4. Types and Variables..7

1.5. Visibility.. 7

1.6. Statements differing from Scala and Swift... 8

2.Lexical Structure..9

2.1. Programs.. 9

2.2. Grammars..10

2.2.1 Lexical grammar (tokens) where different from Scala and Swift..10

2.2.2. Syntactic (“parse”) grammar where different from Scala and Swift... 11

2.3. Lexical Analysis... 13

2.3.1. Comments... 13

2.4. Tokens... 13

2.4.1. Keywords different from Scala and Swift... 13

3. Type System... 14

3.1. Type Rules... 14

3.2. Value Types... 15

3.3. Reference Types... 15

4. Example Programs...16

4.1 & 4.2 Caesar Cipher:... 16

4.3. Factorial:.. 17

4.4. Merge Sort.. 17

4.5 Binary Search Tree:...18

4.6 Pattern Matching:... 19

3

1.1.Genealogy

The diagram shows where QueenScript fits into the programming language genealogy:

4

1.2. Hello World

1.3. Program Structure

The key organizational concepts in QueenScript are as follows:

1. Every program must define a main() in a realm.

2. Any blueprint can implement a vibe.
3. A main() function must return nothing.

4. Any blueprint can have either core, lowkey, gatekeep or public variables (which is the

default).

5. All source code files should contain a .queen file extension.

5

The realm App encapsulates everything within an App module. Within that, there is the blueprint

for an account and an admin. Account also implements the vibe Identifiable interface, this

language’s trait/protocol. Admin then inherits Account and overrides displayID(). The app has

6

multiple members such as core variables like username, lowkey, public, mutual and gatekeep
variables. Main() is the entry point, where every program must define a main()in a realm. It’s fine

to be inside whichever realm as long as it can still be reached by the compiler. Additionally, it has

returned nothing, which is a keyword in this language. Vibes are interfaces and define shared

behavior.

1.4. Types and Variables

There are two kinds of types in QueenScript: value types and reference types. Variables of value

types directly contain their data whereas variables of reference types store references to their

data, the latter being known as objects. With reference types, it is possible for two variables to

reference the same object and thus possible for operations on one variable to affect the object

referenced by the other variable. See Section 3 for details .

1.5. Visibility

QueenScript has four choices for access modifiers which control the visibility and accessibility of

classes, methods and members within a program. Since Queenscript follows OOP, they help

encapsulate the code and manage how different parts of the program interact.

// Public access (default)
main vibe Profile {
 // ...
}

// Private access (only within the vibe)
gatekeep Integer password = 1234

// Protected access (within vibe and sub-vibes)
lowkey String nickname = "silverback"

// Package-private (only within the same realm)
mutuals String sharedInfo = "only for the group"

7

1.6. Statements differing from Scala and Swift

For loop →

While loop →

If-else →

8

Match case →

Function call + Optional →

2.Lexical Structure

2.1. Programs

QueenScript source code is written in files with an extension of “[filename].queen”. A source file is

an ordered sequence of Unicode characters. In each file, there can be more than one realm, which

are comparable to Swift modules or Scala packages. Since this is a language for programmers, a

structured organization could look like

Project/

 |

├── main.queen <- Entry point with main() function

├── Auth.queen <- Contains blueprint account, admin, and more

├── Util.queen <- Helpers and reusable vibes

├── DSA.queen <- Any helpful data structure and algorithms

├── Metrics.queen <- Libraries (such as GirlMath (internet joke)

From this structure, compilation would occur in three phases:

1. Front-End: .queen files would be validated using a lexer and then parsed using our BNF

grammar. Then, an Abstract Syntax Tree would be created as long as there were no type

errors, undefined functions or references, access violations and also respects visibility

modifiers.

9

2. Intermediate Representation (IR): The AST would be compiled into an IR layer respecting

modifiers, simplifying type-sage instructions, and performing optimizations such as dead

code elimination.

3. Back-End: The IR would be converted to bytecode, or native code for the target platform,

provide any error messages and output a .qtc bytecode file or run the main() vibe.

2.2. Grammars

This specification presents the syntax of QueenScript where it differs from Scala and Swift.

2.2.1 Lexical grammar (tokens) where different from Scala and Swift

IDENTIFIER ::= [a-zA-Z_] [a-zA-Z0-9_]*

KEYWORD ::=

 "blueprint" | "vibe" | "func" | "realm" | "core" | "gatekeep" | "lowkey" | "mutuals" |

"viral" | "public"

 | "init" | "main" | "match" | "case" | "else" | "if" | "for" | "in" | "while" | "return"

 | "try" | "catch" | "finally" | "override" | "Nothing" | "Ghost" | "Maybe"

OPERATOR ::= "==" | "!=" | "<=" | ">=" | "&&" | "||" | "+" | "-" | "*" | "/" | "=" | "." | ":" | "->" | "::"

DELIMITER ::= "{" | "}" | "(" | ")" | "[" | "]" | "," | ";" | "<" | ">"

INT_LITERAL ::= [0-9]+

FLOAT_LITERAL ::= [0-9]+ "." [0-9]+

STRING_LITERAL ::= "\"" (~["\\] | "\\" .)* "\""

BOOLEAN_LITERAL ::= "true" | "false"

EMOJI_LITERAL ::= " "

OPTIONAL_LITERAL ::= ".ghost" | ".real"

LINE_COMMENT ::= "//" ~[\n\r]* // single line comment

BLOCK_COMMENT ::= "/*" .*? "*/" // multiline comment

WHITESPACE ::= [\t\r\n]+ // (ignored outside of string literals)

10

2.2.2. Syntactic (“parse”) grammar where different from Scala and Swift

<program> ::= { <realm_decl> }

<realm_decl> ::= "realm" <identifier> "{" { <decl> } "}"

<decl> ::= <blueprint_decl>
 | <vibe_decl>
 | <func_decl>
 | <var_decl>

<blueprint_decl> ::= ["main"] "blueprint" <identifier> [":" <type>] "{" { <member_decl> } "}"

<vibe_decl> ::= "vibe" <identifier> "{" { <func_decl> } "}"

<func_decl> ::= "func" <identifier> "(" [<params>] ")" "->" <type> "{" <block> "}"

<params> ::= <param> { "," <param> }
<param> ::= <identifier> ":" <type>

<var_decl> ::= <visibility> <type> <identifier> ["=" <expr>]

<visibility> ::= "core"
 | "viral"
 | "lowkey"
 | "gatekeep"
 | "mutuals"
 | "public" // default

<type> ::= "Int" | "Float" | "Bool" | "String"
 | "Nothing" | "Ghost"
 | "Maybe" "<" <type> ">"
 | <identifier>

<block> ::= { <stmt> }

<stmt> ::= <var_decl> ";"
 | <assign_stmt> ";"

 | <if_stmt>
 | <while_stmt>
 | <for_stmt>
 | <match_stmt>
 | <return_stmt>
 | <try_stmt>
 | <expr_stmt> ";"

11

<assign_stmt> ::= <identifier> "=" <expr>

<if_stmt> ::= "if" <expr> <block> ["else" <block>]
<while_stmt> ::= "while" <expr> <block>
<for_stmt> ::= "for" <identifier> "in" <expr> <block>

<match_stmt> ::= "match" <expr> "{" { "case" <pattern> "=>" <block> } ["case" "_" "=>"
<block>] "}"

<try_stmt> ::= "try" <block> "catch" <identifier> "." <identifier> <block> ["finally"
<block>]

<return_stmt> ::= "return" <expr> ";"
<expr_stmt> ::= <expr>

<expr> ::= <literal>
 | <identifier>
 | <expr> "." <identifier>
 | <expr> "." <identifier> "(" [<args>] ")"
 | <expr> "(" [<args>] ")"
 | <expr> <binary_op> <expr>
 | "(" <expr> ")"

<args> ::= <expr> { "," <expr> }

<binary_op> ::= "+" | "-" | "*" | "/" | "==" | "!=" | "<" | ">" | "<=" | ">=" | "&&" | "||"

<literal> ::= <int_literal>
 | <float_literal>
 | <string_literal>
 | "true" | "false"
 | ".ghost" | ".real" "(" <expr> ")"
 | " "

<pattern> ::= <literal> | <identifier>

<identifier> ::= letter { letter | digit | "_" }
<int_literal> ::= digit { digit }
<float_literal> ::= digit { digit } "." digit { digit }
<string_literal> ::= "\"" { character } "\""

12

2.3. Lexical Analysis

2.3.1. Comments

Similarly to most programming languages, two forms of comments are supported: single-line comments and

delimited comments. Single-line comments start with the characters // and extend to the end of the source

line. Delimited comments start with the characters /* and end with the characters */. Delimited comments

may span multiple lines. Comments do not nest.

2.4. Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space

and comments are not tokens, although they act as separators for tokens where needed.

Tokens:

★ identifier

★ keyword

★ integer-literal

★ real-literal

★ character-literal

★ string-literal

★ operator-or-punctuator

2.4.1. Keywords different from Scala and Swift

New keywords Removed / Replaced keywords

★ link
★ core
★ lowkey
★ viral
★ Maybe<T>
★ real
★ ghost
★ realm
★ blueprint
★ vibe
★ ghost
★ nothing

★ ref
★ const
★ private
★ Static
★ Optional<T>
★ some
★ none
★ package
★ class
★ Interface
★ null
★ void

13

3. Type System

Just like its predecessors, QueenScript is a statically, strongly typed language and it uses type

inference in order to determine what the initial type of variables and cores (constants) are. This

means that it performs early binding compile-type checking. Essentially, it compiles to machine

code and uses an LLVM-based compiler. Therefore, the compiler will analyze each of the types

being used in the code and make sure that the code is correctly using those types, otherwise, one

may get this CompilationError:

"Expected a Float, got String instead. Fix it. "

(The compiler is a little sassy…)

There are also runtime errors that can be caught such as the one every developer encounters once

in a while, an index out of bounds or off by one.

"Index out of bounds? So is your audacity. "

3.1. Type Rules

The type rules for QueenScript are as follows:

S ⊢ e1: T
S ⊢ e2: T
T is a primitive type

S ⊢ e1 = e2: T

S ⊢ e1: T
S ⊢ e2: T
T is a primitive type

S ⊢ e1 == e2: bool

S ⊢ e1: T
S ⊢ e2: T
T is a primitive type

S ⊢ e1 != e2: bool

S ⊢ e1: T
S ⊢ e2: T
T is a primitive type

S ⊢ e1 < e2: bool

S ⊢ e1: T
S ⊢ e2: T
T is a primitive type

S ⊢ e1 > e2: bool

S ⊢ e1: String
S ⊢ e2: String

S ⊢ e1 + e2: String

S ⊢ e1: Int
S ⊢ e2: Int

S ⊢ e1 + e2: Int

S ⊢ e1: Int
S ⊢ e2: Int

S ⊢ e1 * e2: Int

S ⊢ e1: Int
S ⊢ e2: Int

S ⊢ e1 - e2: Int

S ⊢ e1: Int
S ⊢ e2: Int

S ⊢ e1: String
S ⊢ e2: Int

S ⊢ e1: T
S ⊢ e2: T

14

S ⊢ e1 / e2: Float

S ⊢ e1 + e2: String

T is a value type

S ⊢ e1 ?: e2: T

QueenScript has two categories for its types, value types and reference types. The important

distinction between these two is that value types hold actual data whereas reference types

contain a reference to data’s location within memory. This language borrows similar types

between Scala and Swift but with its own unique flair.

3.2. Value Types

The value types and especially primitive types (Int, Float, Bool), String, Char are all value types

that this language are all inherited from their descendents. The primary different ones are:

➔ “Ghost” (as in ghosting) is similar to “Null” which is of the literal type Null.

➔ “Maybe <T>” is similar to “Optional <T>” in Swift which represents either a wrapped value

or the absence of a value.

3.3. Reference Types

These are some different reference types in this language:

➔ ‘blueprint’ is similar to a ‘class’ in both Scala and Swift. It is quite literally a blueprint that

you can use to build objects, and conforms to inheritance found in OOP.

➔ ‘vibe’ is similar to an ‘interface’ which enforces certain properties on an object (blueprint).

15

4. Example Programs

4.1 & 4.2 Caesar Cipher:

16

4.3. Factorial:

4.4. Merge Sort

17

4.5 Binary Search Tree:

18

4.6 Pattern Matching:

19

