

Reverse Jython
Language Design and Example Usage

Version 9.6

Cassidy Heulings

Reverse Jython was made to practice reading and recognizing words in reverse order.

This is so that users could practice thinking differently than how they are used to

reading, but also so they could get better at spotting palindromes and playing word

games like solving anagrams, word ladders, or apps like word cookies.

⠐⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠂

⠄⠄⣰⣾⣿⣿⣿⠿⠿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣆⠄⠄

⠄⠄⣿⣿⣿⡿⠋⠄⡀⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠋⣉⣉⣉⡉⠙⠻⣿⣿⠄⠄

⠄⠄⣿⣿⣿⣇⠔⠈⣿⣿⣿⣿⣿⡿⠛⢉⣤⣶⣾⣿⣿⣿⣿⣿⣿⣦⡀⠹⠄⠄

⠄⠄⣿⣿⠃⠄⢠⣾⣿⣿⣿⠟⢁⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⠄⠄

⠄⠄⣿⣿⣿⣿⣿⣿⣿⠟⢁⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠄⠄

⠄⠄⣿⣿⣿⣿⣿⡟⠁⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠄⠄

⠄⠄⣿⣿⣿⣿⠋⢠⣾⣿⣿⣿⣿⣿⣿⡿⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⣿⠄⠄

⠄⠄⣿⣿⡿⠁⣰⣿⣿⣿⣿⣿⣿⣿⣿⠗⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡟⠄⠄

⠄⠄⣿⡿⠁⣼⣿⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⣠⣄⢰⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄

⠄⠄⡿⠁⣼⣿⣿⣿⣿⣿⣿⣿⡇⠄⢀⡴⠚⢿⣿⣿⣿⣿⣿⣿⣿⣿⡏⢠⠄⠄

⠄⠄⠃⢰⣿⣿⣿⣿⣿⣿⡿⣿⣿⠴⠋⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⡟⢀⣾⠄⠄

⠄⠄⢀⣿⣿⣿⣿⣿⣿⣿⠃⠈⠁⠄⠄⢀⣴⣿⣿⣿⣿⣿⣿⣿⡟⢀⣾⣿⠄⠄

⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠄⠄⠄⠄⢶⣿⣿⣿⣿⣿⣿⣿⣿⠏⢀⣾⣿⣿⠄⠄

⠄⠄⣿⣿⣿⣿⣿⣿⣿⣷⣶⣶⣶⣶⣶⣿⣿⣿⣿⣿⣿⣿⠋⣠⣿⣿⣿⣿⠄⠄

⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⢁⣼⣿⣿⣿⣿⣿⠄⠄

⠄⠄⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⢁⣴⣿⣿⣿⣿⣿⣿⣿⠄⠄

⠄⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⢁⣴⣿⣿⣿⣿⠗⠄⠄⣿⣿⠄⠄

⠄⠄⣆⠈⠻⢿⣿⣿⣿⣿⣿⣿⠿⠛⣉⣤⣾⣿⣿⣿⣿⣿⣇⠠⠺⣷⣿⣿⠄⠄

⠄⠄⣿⣿⣦⣄⣈⣉⣉⣉⣡⣤⣶⣿⣿⣿⣿⣿⣿⣿⣿⠉⠁⣀⣼⣿⣿⣿⠄⠄

⠄⠄⠻⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣶⣾⣿⣿⡿⠟⠄⠄

⠠⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄

1. Introduction

Reverse Jython is a simple yet somewhat confusing, object-oriented, and strongly

type-safe programming language. Based on Java and Python but differing in the

following ways:

1.​ Keywords are reversed. However, operators are not. Here is a breakdown:
a.​ Identifiers - not reversed
b.​ Keywords - reversed
c.​ Literals - not reversed
d.​ Operators and punctuators - not reversed (logic may be reversed based on
operator such as >,<, -, or /)

e.​ Comments - not reversed
2.​ Entire lines and expressions are reversed. Phrases, including the structure of
statements, are written in reverse

3.​ Python’s built-in functions and types are treated as keywords
4.​ Functions are defined using def, and the syntax uses indentation and colons
instead of curly braces. Semicolons are no longer used at the end of lines,

but are still used in things like looping

5.​ Classes use tini (init reversed) to define constructors, and niam (main
reversed) as the entry point if defined

6.​ file (elif reversed) is used instead of else if in conditional checks
7.​ While assignment statements are written in reverse, the order of elements in
lists is unchanged. If we assign myList to the list [0, 1, 2, 3] ([0, 1, 2, 3]

= myList), element 0 is at index 0 and element 3 is at index 3

8.​ Comments use Java’s // and /* */ syntax, and are not reversed so there is at
least some readability

9.​ Arithmetic and comparison operations have reversed syntax, and may have
reversed logic based on the operation. For example, x = a - b will be b - a =

x. The compiler will take care of the backwards logic, assigning x the value

of a - b, even if the syntax has the opposite result. Similarly, 5 > 1 becomes

1 > 5, which may appear to be false, but as the compiler will reverse the

syntax to take care of the reversed logic, will be true.

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 2

1.1 Genealogy
Reverse Jython was made in 2024 inspired by reading backwards. It is a mix of Java

and Python, blending the syntax of both languages to create a hybrid syntax. It uses

references, built-in types, and built-in functions similar to Python. Like Java, it

uses static typing, with the rav type (var reversed) being inferred at compile time.

Once the compiler locks in a type for rav, it is statically enforced.

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 3

1.2 Hello World

1.3. Program Structure
The key organizational concepts in Reverse Jython are as follows:

1.​ Code is organized by classes (with syntax ssalc). A class will hold data and
methods, similar to Java. Standalone functions outside classes are allowed,

but may take away from the organization of code, reducing clarity. If a class

has a niam (main reversed) function, it is the entry point to the program.

2.​ Classes are initialized using the constructor function tini (init reversed),
like Python’s __init__ or Java’s constructor. tini is automatically called

by object instantiation.

3.​ Indentation-Driven Scope​
Scope if defined by indentation and colons, not curly braces or semi-colons,

similar to Python. Control constructs like if, for, or while, use colons and

are indented.

("\-^-") ​ ​ ("-^-/")
['o__o` ​ ​ `o__o']
_ (_Y_)​ ​ (_Y_) _/
,`.-'--`.._​ ​ _..`--'-.`,
(__)--,_(__)​​ (__)_,--(__)
1 ; :7 ​ ​ 7: ; 1
: '-.-`,_​ ​ _/,`-.-' :
(,_)~~-(,_)​ ​ (_,)-~~(_,)

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 4

This example:

Declares a class named Stack. The fully qualified name of the class is Stack. Stack

contains one field named items and five methods named push, pop, peek, isEmpty, and

size. The class also includes a constructor method to initialize the items field as

an empty list.

1.4 Types and variables
There is one kind of type in Reverse Jython: reference types. Reference types include

all user-defined classes, as well as variables. Variables store references to their

data, which are known as objects. One object can be referenced by more than one

variable, so operations affecting one variable may change the value of another

variable if both variables are referencing the same object.

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 5

1.5 Visibility
Reverse Jython supports public and private member visibility. The accessibility of

class fields and methods are controlled by these visibilities, similar to Java. By

default, fields within a class are private, methods within a class are public,

constructors are public, and both fields and methods outside a class are public. To

specify otherwise, you must add a modifier to whatever data is being modified. Add a

modifier in between class name and ‘ssalc’ keyword for class, add a modifier in

between method name and ‘fed’ keyword for functions, or add a modifier in between

variable name and type for variables. Public members can be accessed by other

classes. Private members can only be accessed within the scope they are defined in.

1.6 Statements differing from Java and Python

Statement Example

Expression statement

If statement

For loop

While loop

For each loop

Class definition

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 6

2. Lexical Structure

2.1 Programs
A Reverse Jython program consists of one or more source files, each composed of an

ordered sequence or characters, typically encoded in Unicode. These source files use

Reverse Jython’s reversed syntax, where lines and keywords are written in reversed

order, while characters remain in their original form.

A Reverse Jython program uses three stages to be processed:

1.​ The source file gets transformed into Unicode characters. It uses standard
character encoding and keeps individual character symbols when syntax is

reversed.

2.​ The Unicode characters are scanned then grouped into tokens. Keywords are
reversed forms of their original spelling, while identifiers, literals,

operators, and numbers are unchanged. The reversed order tokens are extracted

based on this reversed order.

3.​ Based on Reverse Jython’s syntax rules, the token stream gets parsed into
executable code with syntactic analysis. The parser reconstructs logical

structure by applying normal rules after mirroring the line. Therefore, the

syntactic analyser is sensitive to token position and format of code.

..oo8"""Y8b..

.88888888o. "Yb.
.d888P""Y8888b "b.
o88888 88888) "b
d888888b..d8888P 'b
88888888888888" 8
(88DWB8888888P 8)
8888888888P 8
Y88888888P ee .P
Y888888(8888 oP
"Y88888b "" oP"

"Y8888o._ _.oP"
`""Y888boodP""'

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 7

2.2 Grammars
This specification presents the syntax of the Reverse Jython programming language

where it differs from Java and Python.

2.2.1 Lexical grammar (tokens) different from Python and Java
Reverse Jython differs through its reversed syntax. Type declarations follow the

variable and assignment, with optional static typing using the rav type. Operators

remain their original symbols, but the directional logic is flipped as the position

of the operands are reversed.

 <digit>​ ->​ 0 | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | 9
 <number>​ ->​ <digit> | <digit> <number>
 <letter>​ ->​ a-z | A-Z
 <word>​ ->​ <letter> | <letter> <word>
 <identifier>​ ->​ <word> | <word> <number>
 <num_type>​ ->​ “tni” | “taolf” | “laer”
 <type> ​ ->​ "rts" | "rav" | “loob” | <num_type>
 <operator>​ ->​ + | - | * | /
 <comparison>​ ->​ == | != | <= | >= | < | >
 <crement>​ ->​ ++ | –
 <control> ​ ->​ “elihw” | “fi”

2.2.2 Syntactic (parse) grammar different from Python and Java
Reverse Jython differs through its reversed syntax. Assignment and syntax reads right

to left, written in reverse order. In assignment syntax, the expression comes before

the variable. Control structures start with the colon (typically how its syntax

ends), and have reversed keyword order. The parser design would differ from that of a

traditional language as it must recognize the reversed order of the line in order to

apply semantic checks.

 <term>​ ->​ <identifier> | <number>
 <expression>​ ->​ <term> | <term> <operator> <term> | <term> <comparison> <term>
 <assignment>​ ->​ <expression> = <identifier> <type>
 <inc_or_dec>​ ->​ <crament> <identifier>
 ​ ​ ​ IF <identifier> is of type <num_type>

 <cntrl_block> ->​ :(<expression>) <control>

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 8

2.3 Lexical analysis

2.3.1 Comments

There are two forms of comments. Single-line or inline comments are made using

characters // as anything following it in the rest of the line will be a comment.

Delimited comments are comments that spread from the first instance of /* to the

second instance of */. These can vary from one line to multiple lines, as anything

types in between these characters are part of the comment.

2.4 Tokens
Tokens are the smallest units that provide meaning in the source code to the lexical

analysis. Some tokens are reversed according to Reverse Jython’s syntax (these are

noted).

-​ keywords (reversed)
-​ identifiers
-​ integer-literal
-​ real-literal
-​ character-literal
-​ string-literal
-​ operators-or-punctuators

2.4.1 Keywords different from Java or Python

As stated in 1.1, all keywords are reversed. Therefore, all keywords and built in

functions that are not palindromes (such as pop) are new keywords. Here are some

examples:

class -> ssalc​​ var -> rav​​ elif -> file​ ​ for -> rof

def -> def​ ​ public -> cilbup​ file -> elif​ ​ private -> etavirp

init -> tini​ ​ in ​ -> ni​ ​ else -> esle​ ​ return -> nruter

self -> fles​ ​ while -> elihw​ if -> fi​ ​ break -> kaerb

true -> eurt​ ​ false -> eslaf​ None -> enoN​ ​ continue -> eunitnoc

int -> tni​ ​ str -> rts​​ ord() -> ()dro​​ len() -> nel()​

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 9

3. Type System

Reverse Jython’s type system is a strong, optionally static type system. Type

mismatches in operations are not allowed and will result in an error. Type checking

happens at compile time when explicitly declared. Reverse Jython supports type

inference using type rav (var reversed), which is inferred at compile time: the same

time as explicitly declared types. After the type is inferred, it is statically bound

to that type and cannot change for the remainder of the program. So, type

reassignment with rav type variables is not allowed and will result in an error. Only

expressions or literals of single type can be inferred. Expressions of mixed type

upon assignment to rav are not allowed and will result in an error. If a rav variable

is being assigned based on return value, the return value type must be consistent

throughout the entire function. So, for example, a function cannot return either a

string or an integer (rts or tni), it must choose to return only strings or only

integers.

 .
 ":"
 ___:____ |"\/"|
 .' `. \ /
 | O ___/ |

~^

 .
 ":"
|"\/"| ____:___
 \ / .’ '.
 | ___/ O |

~^

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 10

3.1 Type Rules
The type rules for Hybrid are as follows:

Intrinsic Types

s is a string literal​​ i is an integer literal

———————————​ ————————————​ ——————— ———————​
⊢ s: rts​ ​ ​ ⊢ i: tni​ ​ ​ ⊢ eurT: loob ⊢ eslaF: loob

Addition and Multiplication

S ⊢ e₁ : rts​ ​ ​ S ⊢ e₁ : tni​ ​ ​ S ⊢ e₁ : tni

S ⊢ e₂ : rts​ ​ ​ S ⊢ e₂ : tni​ ​ ​ S ⊢ e₂ : tni

—————————— ​​ ——————————​ ​ ——————————

S ⊢ e₂ + e₁ : rts​ ​ S ⊢ e₂ + e₁ : tni​ ​ S ⊢ e₂ * e₁ : tni

Subtraction and Division

S ⊢ e₁ : T​ ​ ​ S ⊢ e₁ : T

S ⊢ e₂ : T​ ​ ​ S ⊢ e₂ : T

T is an intrinsic type​ T is an intrinsic type

———————————​ ———————————

S ⊢ e₂ - e₁ : T​ ​ S ⊢ e₂ / e₁ : T

Assignment and Comparisons

S ⊢ e₁ : T​ ​ ​ S ⊢ e₁ : T​ ​ ​ S ⊢ e₁ : T

S ⊢ e₂ : T​ ​ ​ S ⊢ e₂ : T​ ​ ​ S ⊢ e₂ : T

T is an intrinsic type​ T is an intrinsic type​ T is an intrinsic type

———————————​ ———————————​ ———————————

S ⊢ e₂ = e₁ : T​ ​ S ⊢ e₂ == e₁ : loob​​ S ⊢ e₂ > e₁ : loob

S ⊢ e₁ : T​ ​ ​ S ⊢ e₁ : T​ ​ ​

S ⊢ e₂ : T​ ​ ​ S ⊢ e₂ : T​ ​ ​

T is an intrinsic type​ T is an intrinsic type​ ​

———————————​ ———————————​

S ⊢ e₂ < e₁ : loob​ ​ S ⊢ e₂ != e₁ : loob​​

Reverse Jython has one type: Reference types.

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 11

3.2 Reference types differing from Python and Java
User-defined classes and built-in types are reference types. Variables store

references, or pointers, to objects in memory as opposed to directly storing values.

This typing is closer to Python’s typing rather than Java’s. The difference between

Python’s typing and Reverse Jython’s typing is that, regardless of mutability,

Reverse Jython values all behave as references. Also, as previously mentioned, type

names are reversed. This reversed syntax does not affect their behavior as reference

types.

 ​ _________________________

 ​ (, ______________________)

 ​ | | ||

 ​ | | @@@@ || @@@@

 ​ | | @@@@@@@ || @@@@@@@

 ​ | | @@ ^ ^ || ^ @@@@

 ​ | | @ 3/ || '_ @@@

 ​ | | _@| |_ || __\@ \@

 ​ | | (\)/_\ /_ || _\\ (/) @_/)

 ​ | | \ \|) / \) || |(__/ / /|

 ​ | | |_/ (-/ || ___/ ----/_|

 ​ | | / \ || ,: '(

 ​ | | : | || |: \

 ​ | | : | || |:)

 ​ | | : | || |: |

 ​ | |_______'____,_|_______|| |_____,_|

 .---('________________________)--. | / (

 |____ __________ _| | /\)

 |___| -o- | |__| -o- | (\| /

 |___| -o- | |__| -o- | | /'=.

 |________| |__|______| '=>/ \

 / \ /|/

 ,___/|

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 12

4. Example Programs

4.1 Encrypt:

4.2 Decrypt:

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 13

4.3 Factorial:

4.4 Bubble Sort:

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 14

4.5 Queue:

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 15

4.6 Circular single linked list:

**Ascii art by (in order): Copypasta, regality, Donovan Bake, Riitta Rasimus, b'ger

Reverse Jython ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 16

