
GLaDOS
Language Specification

Version 42

Geeky Language and Depraved Original Syntax

"pa' DIchDaq taH ro'qegh'Iwchab"

"There will be blood pie."

"ro'qegh'Iwchab ghaH Qot"

"The blood pie is a lie."

A Neal Tanner Production

WARNING:

The following document was prepared by a sarcastic and snarky

individual. You have been warned.

1

1. Introduction

GLaDOS is a bizarre, geeky, twisted, object-oriented, interpreted and strongly-typed programming language.

Based on Javascript and LOGO, but differing in the following ways:

1. All keywords in the language have been translated into Klingon.

2. The number of basic types has been expanded from Var, adding Number, Word, and Boolean.

3. GLaDOS uses the interpreted aspects of LOGO and Javascript.

4. GLaDOS is designed to be used with an integrated IDE, similar to the one LOGO uses.

5. And whatever other goofy stuff I decide to throw in.

1.1 Hello world

Qap helloWorld ()

tagh

jatlh("Hello World");

pItlh

helloWorld(); // Outputs Hello World

1.2 Program structure

The key organizational concepts in GLaDOS are as follows:

1. There is no required Main necessary to start a GLaDOS program.

2. Functions can be defined individually or as part of a class.

3. Individual statements can also be entered, on a line by line basis.

4. GLaDOS operates in an interpreted environment.

5. Individual statements, including class declarations are entered into the interpreter.

6. GLaDOS functions and class definition are entered in the built-in editor.

This example

Segh arrayTest

tagh

'ang mI'DaH dataArray;

Qap arrayTest()

tagh

dataArray = new DaH();

2

pItlh

'ang Qap add(mI' x)

tagh

dataArray.chel(x);

pItlh

'ang Qap retrieve(mI' index)

tagh

mI' returnValue := 0;

if((index >= 0) && (index < dataArray.toghta'))

tagh

returnValue := dataArray[index];

pItlh

tatlh returnValue;

pItlh

pItlh

arrayTest myTest = chu' arrayTest();

declares a class named Test. The fully qualified name of this class is Test. The class contains several

members: an array field named dataArray, a constructor, and a method named add and retrieve. An

instance of the class is then declared.

1.3 Types and variables

There are two kinds of types in GLaDOS: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being known as
objects. With reference types, it is possible for two variables to reference the same object and thus possible for
operations on one variable to affect the object referenced by the other variable.

3

1.4 Statements Differing from Javascript and LOGO
1.4.1 Translation Guide

Why is this here? The obvious reason. It had to go SOMEWHERE. It also helps explain the next section.

English meaning Klingon keyword English meaning Klingon keyword

class Segh new chu'

object bep if chugh

public 'ang more (else) latlh

protected QaD truth vIt

private So' lie Qot

this vam open poSmoH

function Qap speak (print) jatlh

beginning tagh cut pe'

end pItlh to / at Daq

return tatlh blood (for drawing) 'Iw

while vIS on Daq

for vaD off lItha'

words mu'mey go jaH

number mI' back DoH

number be accurate

(float)

mI'qar right nIH

array DaH left poS

read only (constant) laDneH filled tebta'

boolean (which is true) teHbogh nothing (null) pagh

add chel numbered (size) toghta'

remove teq battle (event) may'

deal (handle) Da

4

1.4.2 Statement List

Statement Example

Expression statement mI' x;

x := 5;

mI' y = x + 1;

If (chugh) statement mI' x := 5;

chugh(x > 4)

tagh

 jatlh("X is greater than 4.\n");

pItlh

Else/More (latlh) statement mI' x := 5;

chugh(x == 4)

tagh

 jatlh("X is 4\n");

pItlh

latlh

tagh

 jatlh("X is not 4\n");

pItlh

While (vIS) statement mI' x := 5;

vIS(x == 5)

tagh

 jatlh("X is: " + mI'.Daqmu'mey(x) +
"\n");

 x--;

pItlh

For (vaD) statement vaD(mI' i := 0; i < 5; i++)

tagh

 jatlh(mI'.Daqmu'mey(i));

pItlh

Output (jatlh) statement jatlh("This is some output.");

Function (Qap) statement Qap printWords(mu'mey inputWords)

tagh

 jatlh(inputWords);

5

pItlh

Return (tatlh) statement Qap calculate(mI' x, mI' y)

tagh

 tatlh x + y;

pItlh

1.5 Classes and objects
New classes are created using class declarations.

The following is a declaration of a simple class named Point:

'ang Segh Point
tagh

'ang mI' x, y;

'ang Point(mI' x, mI' y)

 tagh
vam.x := x;
vam.y := y;

pItlh // end constructor

pItlh // end class

Instances of classes are created using the new operator, which allocates memory for a new instance, invokes a

constructor to initialize the instance, and returns a reference to the instance.

Point p1 := chu' Point(0, 0);
Point p2 := chu' Point(10, 20);

The memory occupied by an object is automatically reclaimed when the object is no longer in use. It is neither

necessary nor possible to explicitly deallocate objects in GLaDOS, though you may be able to coax the garbage

collector into action early.

1.5.1 Accessibility
Each member of a class has an associated accessibility, which controls the regions of program text that are able

to access the member. There are three possible forms of accessibility. These are summarized in the following

table.

Accessibility English word Meaning

'ang public Access not limited.

QaD protected Access limited to this class or classes derived from this class

So' private Access limited to this class. This is the default accessibility, if

not otherwise stated.

1.5.2 Fields

6

A field is a variable that is associated with a class or with an instance of a class.

'ang Segh Color
tagh

'ang laDneH Color Black := new Color(0, 0, 0);
'ang laDneH Color White := new Color(255, 255, 255);

So' mI' red, green, blue;

'ang Color(mI' red, mI' green, mI' blue)
 tagh

this.red := red;
this.green := green;
this.blue := blue;

pItlh // end constructor
pItlh // end class

1.5.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.

The signature of a method must be unique in the class in which the method is declared.

1.5.3.1 Constructors

GLaDOS supports both instance and static constructors. An instance constructor is a member that implements

the actions required to initialize an instance of a class. A static constructor is a member that implements the

actions required to initialize a class itself when it is first loaded.

1.5.3.2 Properties

Properties are a natural extension of fields. Both are named members with associated types, and the syntax for

accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.

Instead, properties have accessors that specify the statements to be executed when their values are read or

written.

1.5.3.3 Events

An event (may') is a member that enables a class or object to provide notifications. Clients react to events

through event handlers. Event handlers are attached using the chelmay'Da function and removed using the

teqmay'Da function. The following example attaches an event handler for a mouseClick event of myList.

List myList := chu' List();

myList.chelmay'Da(mouseClick); // Add the event handler.

myList.teqmay'Da(mouseClick); // Remove the event handler.

1.6 Arrays

7

An array is a data structure that contains a number of variables that are accessed through computed indices. The

variables contained in an array, also called the elements of the array, are all of the same type, and this type is

called the element type of the array. Arrays can be dynamically increased, after being defined. The following

example allocates a one-dimensional, a two-dimensional, and a three-dimensional array.

mI'DaH a1 := new DaH(10);
mI'DaH a2 := new DaH(10, 5);
mI'DaH a3 := new DaH(10, 5, 2);

The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the a3 array contains 100

(10 × 5 × 2) elements.

8

2. Lexical structure

1. Programs
A GLaDOS program consists of one or more source files. A source file is an ordered sequence of (probably

Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a

sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2. Grammars
This specification presents the syntax of the GLaDOS programming language where it differs from Javascript

and LOGO.

2.2.1 Lexical grammar where different from Javascript and LOGO

string ::== " character list space character list"

identifier ::== character character list digit list

::== underscore character list digit list

character list ::== character character list

::== character

digit list ::== digit digit list

::== digit

character ::== a | b | ... | y | z

::== A | B | ... | Y | Z

digit ::== 0 | 1 | ... | 8 | 9

space ::== SPACE character

underscore ::== _

2.2.2 Syntactic (“parse”) grammar where different from Javascript and LOGO
function-statement:

Qap function-identifier (argument-list)

tagh

embedded-statement

pItlh

9

if-statement:

chugh (boolean-expression)

tagh

embedded-statement

pItlh

if-else-statement:

chugh (boolean-expression)

tagh

embedded-statement

pItlh

latlh

tagh

embedded-statement

pItlh

if-else-if-statement:

chugh (boolean-expression)

tagh

embedded-statement

pItlh

latlh chugh (boolean-expression)

tagh

embedded-statement

pItlh

for-statement:

vaD (initialization-statement ; boolean-expression ; increment-statement)

tagh

embedded-statement

pItlh

while-statement:

vIS (boolean-expression)

10

tagh

embedded-statement

pItlh

2.2.3 Grammar notation
The lexical and syntactic grammars are presented using BNF grammar productions. Each grammar production

defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-

terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type, and

terminal symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by a

colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of

non-terminal or terminal symbols. For example, the production:

while-statement:

vIS (boolean-expression)

tagh

embedded-statement

pItlh

defines a while-statement to consist of the token vIS, followed by the token “(”, followed by a boolean-

expression, followed by the token “)”, followed by tagh, followed by an embedded-statement and finishing

with pItlh.

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate

lines. For example, the production:

statement-list:

statement

statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a statement. In

other words, the definition is recursive and specifies that a statement list consists of one or more statements.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase

“one of” may precede a list of expansions given on a single line. This is simply shorthand for listing each of the

alternatives on a separate line. For example, the production:

real-type-suffix: one of

F f D d M m

is shorthand for:

real-type-suffix:

F
f
D
d
M
m

11

2.3 Lexical analysis

2.3.1 Line terminators
Line terminators divide the characters of a GLaDOS source file into lines.

new-line:

Carriage return character (U+000D)

Line feed character (U+000A)

Carriage return character (U+000D) followed by line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

2.3.2 Comments
GLaDOS inherits its comment structure from Javascript. Two forms of comments are supported: single-line

comments and delimited comments. Single-line comments start with the characters // and extend to the end of

the source line. Delimited comments start with the characters /* and end with the characters */. Delimited

comments may span multiple lines. Comments do not nest.

2.3.3 White space
White space is defined as any character with Unicode class Zs (which includes the space character) as well as

the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:

Any character with Unicode class Zs

Horizontal tab character (U+0009)

Vertical tab character (U+000B)

Form feed character (U+000C)

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and

comments are not tokens, though they act as separators for tokens.

token:

identifier

keyword

integer-literal

digit-list

real-literal

digit-list . digit-list

character-literal:

character

string-literal:

" character-list "

" character-list space character-list "

mathematical-operator:

12

+ - * / %

^ += -=

logical-operator:

== != >= <=

punctuator:

() [] ;

" ' .

2.4.1 Keywords different from Javascript or LOGO
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except

when prefaced by the @ character.

Removed keywords:

All of them. GLaDOS uses no English words as keywords. Therefore, it uses NO keywords from
Javascript or LOGO.

Come on, really, the whole language is in Klingon. What exactly did you expect?

New keywords:

All of them. Alright, alright, here's a list of them, too. And their translations from English. This list is
also not exhaustive by any means. It is simply the words that were found to be necessary at the publication
time.

English meaning Klingon keyword English meaning Klingon keyword

public 'ang words mu'mey

protected QaD number mI'

private So' number be precise (for

floats)

mI'qar

function Qap if chugh

beginning tagh more (else) latlh

end pItlh truth vIt

return tatlh lie Qot

while vIS blood (for drawing) 'Iw

for vaD new chu'

array DaH speak (print) jatlh

boolean teHbogh nothing (null) pagh

13

3. Basic concepts

3.1 Application Startup
Application startup occurs when a user enters their first command into the interpreter's command line. This can

either be a user-define function, created using the built-in editor, or code typed directly into the command line,

such as drawing commands.

GLaDOS programs do not require a defined Main method, or other such predefined startup point. They begin

when and where the user wants them to.

3.2 Application termination
Application termination occurs when the currently active function has completed all its steps, or the user entered

command has been fully interpreted and executed, or rejected. If a command is found to have the incorrect

form, an error message is returned, and no execution occurs.

The same is true when GLaDOS executes a function. When a error is reached, function execution stops

immediately, and returns an error message. Further execution is terminated, and control returns to the command

line.

3.3 Scope
GLaDOS utilizes static scope, just as Javascript does.

Qap printStuff()

tagh

 laDneH mI' TIMES_TO_PRINT := 5;

mI' x := 0;

vaD(mI' i := 0; i < TIMES_TO_PRINT; i++)

 tagh

jatlh("The value i of is: " + mI'.Daqmu'mey(i) + "\n");

pItlh

vIS(x < TIMES_TO_PRINT)

tagh

jatlh("The value of x is: " + mI'.Daqmu'mey(x) + "\n");

x++;

pItlh

pItlh

mI' x := 10;

mI' i := 9;

printStuff();

14

Scope Name Type Value

0 ("Main") x mI' 10

i mI' 9

printStuff Qap

1 (printStuff) TIMES_TO_PRINT laDneH mI' 5

x mI' 0 (initial value)

5 (after vIS)

2 (vaD) i mI' 5 (final value)

3 (vIS) None None None

Qap printArray(mI'DaH someArray)

tagh

mI' size := someArray.length;

vaD(mI' i := 0; i < size; i++)

tagh

jatlh(mI'.Daqmu'mey(i) + ": " +

mI'.Daqmu'mey(someArray[i]) + "\n");

pItlh

pItlh

Qap printStuff(mu'mey inputWords)

tagh

jatlh("The inputted value was: " + inputWords + "\n");

pItlh

Qap addStuff(mI' a, mI' b)

tagh

tatlh a + b;

pItlh

mI' x := 5;

mI' y := 6;

mI' z := addStuff(x, y);

mI'DaH myArray := new DaH[1, 2, 3, 4];

printArray(myArray);

15

printStuff(mI'.Daqmu'mey(z));

Scope Name Type Value

0 ("Main") x mI' 5

y mI' 6

z mI' 11

myArray mI'DaH 1, 2, 3, 4

addStuff Qap

printArray Qap

printStuff Qap

1 (addStuff) a mI' 5

b mI' 6

2 (printArray) someArray mI'DaH 1, 2, 3, 4

size mI' 4

3 (vaD in

 printArray)

i mI' 4 (final value)

4 (printStuff) inputWords mu'mey "11"

3.4 Automatic memory management
GLaDOS employs automatic memory management, which frees developers from manually allocating and

freeing the memory occupied by objects. Automatic memory management policies are implemented by a

garbage collector. It differs from Javascript and LOGO in the following ways:

1. As GLaDOS is built on Javascript, it relies extensively on Javascript's own garbage collector.

2. Being an educational language, in the style of LOGO, GLaDOS performs its most intense garbage

collection after a workspace has been completely closed out. Only when a workspace has been closed

out can GLaDOS be sure that it is completely safe to garbage collect.

3. Active programming workspaces are garbage collected, but in a minimal fashion. It is impossible to be

sure when an element loaded into the workspace will be needed.

4. Note: At this time, GLaDOS' author believes this to be the correct approach to garbage collection.

However, he reserves the right to more closely examine the garbage collection practices of both LOGO

and Javascript, and later revise his approach to garbage collection.

16

4. Types

GLaDOS types are divided into two main categories: Value types and reference types.

4.1 Value types (different from Javascript and LOGO)
There are four value types in GLaDOS, which are the four basic data types defined in the language. They are

mI' (integer), mI'qar (float), mu'mey (string), and teHbogh (boolean).

mI' x := 5;

mI'qar y := 1.05;

mu'mey someWords := "some words";

teHbogh test1 := vIt; // True

teHbogh test2 := Qot; // False

4.2 Reference types (differing from Javascript and LOGO)
All DaHs (arrays) and beps (objects) are handled as reference types.

Arrays:

mI'DaH intArray := new DaH(3);

intArray[0] := 1;

intArray[1] := 2;

intArray[2] := 3;

mI'qarDaH floatArray := new DaH[1.3, 1.2, 1.1];

mu'meyDaH wordArray := new DaH["test", "test", "test"];

teHboghDaH booleanArray := new DaH();

booleanArray[0] := vIt;

booleanArray[1] := Qot;

Objects:

myClass test := pagh;

test := myClass();

myClass test2 := myClass();

17

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in the

variable. GLaDOS is a type-safe and strongly-typed language.

All basic variables (mI', mI'qar, mu'mey, and teHbogh) are stack-dynamic. This is designed to allow for easy

recursion with these variable types.

Objects and arrays (bep and DaH) are explicit heap-dynamic. This allows for easy management of dynamic

storage.

For a detailed parameter passing explanation and example, please see section 6.

5.1 Variable categories
mI' – Number / Integer

mI' x := 5;

laDneH x1 := 6; // Constant integer

mI'qar – Accurate Number / Float

mI'qar y := 1.05;

laDneH mI'qar y1 := 1.20; // Constant float

mu'mey – Words / String

mu'mey myWords := "my string"; // String

laDneH mu'mey myWords2 := "some string"; // Constant string

teHbogh – Boolean

teHbogh test1 := vIt; // True

teHbogh test2 := Qot; // False

laDneH teHbogh test3 := vIt; // Constant true

DaH - Array

mI'DaH myArray := new DaH(5);

myArray[0] := 1;

myArray[1] := 2;

myArray[2] := 3;

myArray[3] := 4;

myArray[4] := 5;

bep - Object

Point p1 := new Point(5, 6);

18

6. Parameter Passing

6.1 Method

GLaDOS uses pass-by-value (In Mode) for the basic variable types (mI', mI'qar, mu'mey and teHbogh).

Pass-by-value is implemented by copying. Parameters passed have their values copied into new storage, set

aside for the function parameters.

GLaDOS uses pass-by-reference (InOut mode) for objects and arrays. While these references are pointers back

to the object or array, it is not possible to do pointer math on them. The only way to change the memory address

they point at is to assign the reference to a new object or array.

6.2 Examples
Example:

Qap printArray(mI'DaH someArray)

tagh

mI' size := someArray.toghta';

vaD(mI' i := 0; i < size; i++)

tagh

jatlh(mI'.Daqmu'mey(i) + ": " + mI'.Daqmu'mey(someArray[i]) + "\n");

pItlh

pItlh

Qap printStuff(mu'mey inputWords)

tagh

jatlh("The inputted value was: " + inputWords + "\n");

pItlh

Qap addStuff(mI' a, mI' b)

tagh

tatlh a + b;

pItlh

mI' x := 5;

mI' y := 6;

mI' z := addStuff(x, y);

mI'DaH myArray := new DaH[1, 2, 3, 4];

printArray(myArray);

19

printStuff(mI'.Daqmu'mey(z));

Activation Record:

Data "Main" Local Variables:

Name Type Value

 x mI' 5

 y mI' 6

 z mI' 11 (after code execution)

addStuff Local variables:

 None

Parameters:

Name Type Value

a mI' 5

b mI' 6

Return Address:

("Main", line 3)

printArray Local variables:

Name Type Value

size mI' 4

i mI' 4

Parameters:

Name Type Value

someArray mI'Dah myArray, "Main"

Return Address:

("Main", line 5)

printStuff Local variables:

 None

Parameters:

Name Type Value

inputWords mu'mey 11

Return Address:

20

("Main", line 6)

Code "Main" mI' x := 5;

mI' y := 6;

mI' z := addStuff(x, y);

mI'DaH myArray := new DaH[1, 2, 3, 4];

printArray(myArray);

printStuff(mI'.Daqmu'mey(z));

addStuff tatlh a + b;

printArray mI' size := someArray.length;

vaD(mI' i := 0; i < size; i++)

tagh

jatlh(mI'.Daqmu'mey(i) + ": " +

 mI'.Daqmu'mey(someArray[i]) + "\n");

pItlh

printStuff jatlh("The inputted value was: " + inputWords +
"\n");

21

7. Conversions

A conversion enables an expression to be treated as being of a particluar type.

7.1 Implicit conversions (are bad in GLaDOS)
There are no implicit conversions conversions in GLaDOS. Passing a parameter that doesn't match the required

type will trigger an interpreter error.

Even the output functions take a string as a parameter. All data to be outputted needs to be explicitly converted

to mu'mey (translation: words) before it can be outputted.

Implicit conversions are not for true Klingon warriors. Only a worthless p'tak would expect a language to

employ them.

7.2 Explicit conversions (much better in GLaDOS)
All type conversions in GLaDOS are explicit. Each meta class library possesses a Daqmu'mey function.

(translation: To Words) This can be called, and then the matching data type passed in, for conversion to words.

The function then returns the appropriate words.

For example:

mI' x := 5;

jatlh("The value of X is: " + mI'.Daqmu'mey(x) + "\n"); // Outputs 5

In this example, x is declared as mI', assigned a value of 5, and passed to the output function. Notice that the

meta-class function mI'.Daqmu'mey is called, and x is passed to it, for the explicit conversion.

Let's consider a more complicated example:

mu'mey y := "42";

mI' z := mu'mey.DaqmI'(y) + 5;

jatlh("The value of z is: " + mI'.Daqmu'mey(z) + "\n"); // Outputs 47

In this example, y is declared as mu'mey, and assigned a value of "42". z is declared as mI', then assigned the

value of y, which is converted by a meta-class conversion function, which has also 5 added to it. Notice that the

meta-class function mI'.Daqmu'mey is called, and z is passed to it, for the explicit conversion.

22

8. Statements

Regarding statements, GLaDOS differs from Javascript and LOGO in the following areas:

Statements:

1. GLaDOS follows the Javascript style of requiring a semi-colon at the end of each statement.

2. Statements can also be assignment or declaration statements.

3. Statements can be contained inside of blocks.

Declaration Statements:

1. Declaration statements consist of a type and an identifier name.

2. All variables must be declared, before they can be used.

3. Variables can be assigned a value when they are declared.

Assignment Statements:

1. Assignment statements use the := operator.

2. = is not a valid operator for assignments.

Blocks:

1. Blocks do not use curly braces.

2. Blocks begin with tagh, and end with pItlh.

3. Blocks can be associated with loops (vaD or vIS), or chugh, latlh, and chugh latlh.

23

9. Example Programs

Simple Loop Example:

mI' x := 4;

vaD(mI' i := 0; i < x; i++)

tagh

jatlh("The number is:");

jatlh(mI'.Daqmu'mey(x + i) + "\n");

pItlh

vIS(x > 0)

tagh

jatlh("The number is:");

jatlh(mI'.Daqmu'mey(x) + "\n");

x--;

pItlh

Change example:

Qap makeChange(mI' startAmount)

tagh

mI' amount := 0;

mI' quarters := 0;

mI' dimes := 0;

mI' nickels := 0;

mI' pennies := 0;

amount := startAmount;

quarters := mI'.bIng(amount / 25);

amount := amount % 25;

dimes := mI'.bIng(amount / 10);

amount := amount % 10;

nickels := mI'.bIng(amount / 5);

amount := amount % 5;

pennies := amount;

jatlh("Original input was: " + mI'.Daqmu'mey(startAmount) + "\n");

jatlh("Quarters: " + mI'.Daqmu'mey(quarters) + "\n");

jatlh("Dimes: " + mI'.Daqmu'mey(dimes) + "\n");

jatlh("Nickels: " + mI'.Daqmu'mey(nickels) + "\n");

24

jatlh("Pennies: " + mI'.Daqmu'mey(pennies) + "\n");

pItlh // end makeChange

// Begin use example

makeChange(42);

// End use example

Drawing example:

// Draw a triangle

'Iw.nIH(45);

'Iw.cher(255, 0, 0);

'Iw.jaH(50);

'Iw.nIH(90);

'Iw.jaH (50);

'Iw.nIH(135);

'Iw.jaH(70);

'Iw.nIH(135);

// Turn off the blood

'Iw.lItha'();

// Move into the center

'Iw.jaH(20);

'Iw.nIH(45);

'Iw.jaH(20);

// Set the blood color

'Iw.cher(255, 0, 0);

// Fill the triangle

'Iw.tebta'();

'Iw.nIH(180);

'Iw.jaH(100);

'Iw.cher(0, 0, 0);

// Turn on the blood

'Iw.Daq();

// Perform a for loop, to draw a square.

vaD(mI' i := 0; i < 4; i++)

tagh

'Iw.jaH(100);

'Iw.nIH(90);

pItlh

// Turn off the blood

25

'Iw.lItha'();

// Move inside the square

'Iw.jaH(50);

'Iw.nIH(90);

'Iw.jaH(20);

// Fill the square.

'Iw.tebta'();

Encrypt / Decrypt example:

mI' CHAR_CODE_A := 65;

mI' CHAR_CODE_Z := 90;

Qap decryptUnknown (mu'mey inputWords, mI' shiftValue)

tagh

chugh(maxShiftValue >= 0)

tagh

mu'mey outputWords := "";

outputWords += "Caesar " + shiftValue + ": ";

outputWords += decrypt(inputWords, shiftValue);

outputWords += "\n";

 jatlh(outputWords);

decryptUnknown(inputWords, (shiftValue - 1));

pItlh // end chugh

pItlh // end decryptUnknown

Qap decrypt (mu'mey inputWords, mI' shiftValue)

tagh

tatlh shiftWords(mu'mey.DaqDung(inputWords), -shiftValue);

pItlh // end decrypt

Qap encrypt (mu'mey inputWords, mI' shiftValue)

tagh

tatlh shiftWords(mu'mey.DaqDung(inputWords), shiftValue);

pItlh // end encrypt

Qap shiftWords (mu'mey inputWords, mI' shiftValue)

tagh

mu'mey shiftedWords := "";

mI' shiftedCharCode := 0;

mI' shift := shiftValue % 26;

26

mI' difference := 0;

chugh(inputWords != "")

tagh

mI' currentCharCode := mu'mey.mI'Daq(inputWords, 0);

chugh((currentCharCode >= CHAR_CODE_A) &&

(currentCharCode <= CHAR_CODE_Z))

tagh

shiftedCharCode := currentCharCode + shift;

chugh(shiftedCharCode < CHAR_CODE_A)

tagh

difference := CHAR_CODE_A - shiftedCharCode;

shiftedCharCode := CHAR_CODE_Z - difference + 1;

pItlh // end chugh

latlh chugh(shiftedCharCode > CHAR_CODE_Z)

tagh

difference := shiftedCharCode - CHAR_CODE_Z;

shiftedCharCode := CHAR_CODE_A + difference - 1;

pItlh // end latlh chugh

shiftedWords += mu'mey.vo'mI'(shiftedCharCode);

pItlh // end chugh

latlh

tagh

// Character is whitespace. Add to the string without shifting.

shiftedWords += mu'mey.vo'mI'(currentCharCode);

pItlh // end latlh

shiftedWords += shiftWords(mu'mey.pe'(inputWords, 1), shiftValue);

pItlh // end chugh

tatlh shiftedWords;

pItlh // end shiftWords

// Begin use example

mu'mey testWords := "THIS IS A TEST STRING";

mu'mey resultWords := "";

mu'mey secondResultWords := "";

resultWords := encrypt(testWords, 3);

jatlh(resultWords);

secondResultWords := decrypt(resultWords, 3);

jatlh(secondResultWords);

27

decryptUnknown("HAL", 26);

// End use example

28

10. Conclusion

The language presented here is obviously an attempt at making as depraved a language as possible. If it

wasn't, what other good reason is there for developing a entire programming language in Klingon? However,

the language is not without its useful points. It combines elements from two very different languages, Javascript

and LOGO, and melds them in a very interesting manner. If another language, with an English syntax, but a

similar structure to GLaDOS were to be developed, it would have a number of advantages, especially for

educational use. Let's look at Javascript and LOGO, the strengths of each, the weaknesses that have been left

behind, and finally the advantages of the resulting language.

Javascript has a number of strengths as a development language, and for educational use. Javascript was

intended as a client side web scripting language. Its popularity has allowed it to become prevalent in all modern

web browsers. In a sense, Javascript is even more platform independent than Java. Javascript code that works

in Mozilla Firefox on a PC will work equally well in Mozilla Firefox on a Mac, with no modifications.

Stylistically, Javascript is similar to C, C++, C# and Java. This allows students of Javascript to find themselves

at home in C, C++, C# and Java. Javascript is also object-oriented, allowing students to be introduced to these

concepts, while at the same time teaching them the language syntax.

LOGO's principle strengths lie in its abilities as an educational language, something it was designed

exclusively for. Its development environment is command-driven. A programmer enters a command, and sees

an immediate result. This simplicity is valuable for students, allowing them to easily experiment with new

commands, without the heavy framework of a full program to worry about. LOGO is strongly-typed, a concept

the author finds valuable in enforcing good programming habits and styles. This is especially important for

teaching students, as a weakly-typed language allows too many opportunities to develop sloppy programming

habits.

29

Javascript does have several weaknesses that make it difficult to use as an educational language. First, it

is weakly-typed. While weak typing is not necessarily a bad thing, the author believes that it can lead to

beginning programmers forming sloppy habits and styles. Strong typing, as previously stated, is thought to help

curb some of these tendencies. Second, it is difficult to program in Javascript without knowing some HTML

and CSS as well. Producing a stylish looking program in Javascript requires knowledge of HTML and CSS as

well. Even trying to format output from Javascript requires knowledge of HTML. This leads to teaching not

only Javascript, but HTML and CSS as well. This takes away from time spent learning Javascript, and general

programming concepts, which isn't desirable when teaching beginning programmers.

LOGO has several weaknesses that limit its usefulness as an educational language. First, it uses a

syntax that is utterly dissimilar to any other modern language. While the plain English approach it takes to

identifiers and function names makes it desirable for teaching completely new programmers, it is difficult to

transition to another language's syntax from LOGO. When you get right down to it, many modern languages

look like C. If you want to teach someone to program, and wanted them to be comfortable and familiar with the

syntax of another language, you teach them a language that derives its style and syntax from C. Since LOGO

doesn't do this, it would be a bit confusing for a new programmer to move from LOGO to Java. Second, LOGO

is not object-oriented. It is a functional language, and doesn't support object-oriented design. This makes it

impossible to teach any object-oriented design in LOGO, or even introduce the concept.

GLaDOS, or its English equivalent, LOGOScript, moves beyond these disadvantages, while retaining

the strengths of each language. It embraces strong typing and uses simple names for its various variable types.

Rather than integer, it uses number as its base numeric notation. Rather than string, it uses words as its multi-

character storage. It utilizes the C-like syntax of Javascript, as seen in the example programs. Each statement

ends with a semi-colon, mimicking all languages utilizing the syntax of C. It allows both a functional and

object-oriented approach to programming. Since functional programming is simpler to work in for a beginning

programmer, it allows this to start with. As the programmer grows more confident and skilled, they can add

30

functions to their programs, followed by objects when they are ready. The language's development environment

is even intended to be platform independent. Designed to be built on Javascript, it is meant to run equally well

in any modern browser, on any modern operating system.

GLaDOS / LOGOScript is also equally appropriate for any age programmer. The drawing commands

are simple and straight forward, a clear inheritance from LOGO. This allows young learners to marvel at how

easily they can make the language's on-screen avatar draw pictures. As this is a programming language, they

can even save the steps, and reproduce the drawing at any time. Older students will find more value in the

language's more advances features. Loops and if / else statements allow functional programs to be easily

implemented. These can vary from something as simple as the change calculator, with its relatively

uncomplicated math, to more complex character / string manipulation program like the encrypt / decrypt

example.

In conclusion, GLaDOS / LOGOScript has the makings of a premiere educational language. Traditional

educators will prefer the idea of GLaDOS' English-language cousin, LOGOScript. However, the GLaDOS will

certainly appeal to one educator in particular. Given his love of Portal, Star Trek, Javascript and learning

through pain, Alan Labouseur is sure to enjoy GLaDOS. Its use of Javascript-like syntax, combined with the

discomfort and insanity of attempting to program in Klingon is sure to entertain and delight his twisted and

perverse sensibilities.

31

11. Sources

English to Klingon:

http://klv.mrklingon.org/klvtab.html

Javascript:

http://www.w3schools.com/js/default.asp

Javascript Grammar / Statements:

http://home.cogeco.ca/~ve3ll/jstutor2.htm#co

http://www.wdvl.com/Authoring/JavaScript/Tutorial/grammar.html

Javascript reserved words:

http://en.wikibooks.org/wiki/JavaScript/Reserved_Words

32

