
liteRoast Page 1 of 15

 (
) (
 ___...(-------)-....___
 .-"") (""-.
 .-'``'|-._) _.-|
 / .--.| `""---...........---""` |
 / / | |
 | | | |
 \ \ | |
 `\ `\ | World’s Best Programmer |
 `\ `| |
 _/ /\ /
 (__/ \ /
 ..---""` \ /`""---..
 .-' \ / '-.
 : `-.__ __.-' :
 :) ""---...---"" (:
 '._ `"--...___...--"` _.'
 \""--..__ __..--""/
 '._ """----.....______.....----""" _.'
 `""--..,,_____ _____,,..--""`
 `"""----"""`

liteRoast

A Language Design Project for CMPT330L

Andrew Hatch

liteRoast Page 2 of 15

1.Introduction

liteRoast is a simple(ish) type-safe programming language, created to incorporate elements from both

Java and Pascal in order to make a more readable (“lite”) blend of both. Does it accomplish this? Not

perfectly – but it was at least fun to plan out.

liteRoast differs from its forefathers in the following ways:

1. Approximately 300% more “java”-related functionality - Keywords like int, string, array have

been replaced by more fitting terms (see sections 2.2.1 - 2.2.2 for more information).

2. Functions, Classes and Objects must be declared with the “brew” operator placed before them,

taken as inspiration from Python’s decl.

3. All functions and classes (whether public or private) must be declared with their respective

identifiers:

a. “lite” for public.

b. “dark” for private.

4. Variable assignment is done through the “:=” operator.

5. Primitive number types (int, float, double) have been consolidated under the “cream” keyword.

All cream variables are compatible with each other and can be modified freely.

6. Several other formatting-related changes (refer to section 1.3 for more information)

liteRoast Page 3 of 15

1.1.Genealogy

liteRoast Page 4 of 15

1.2.Hello world

1.3.Program structure

The key organizational concepts in liteRoast are as follows:

1. Brackets (“{}“) have been replaced by “pour” and “sip” for opening and closing blocks,

respectively. These do not need the usual end-of-line terminating symbol to work.

a. “for” and “while” functions do not require a “pour” token to work, instead needing a “do”

token immediately following the expression. They definitely need a “sip” token to

terminate, though.

2. Borrowing from Pascal, liteRoast methods require a “toppings” block where variables are

initialized, placed before the driver code. Variables can only be declared in these blocks, but can

be used in other methods so long as they are called properly and are public.

3. At least one Order (“class”) must exist in each program, borrowed from Java. Orders can coexist

peacefully in the brewing process so long as they do not share the same identifier.

4. A main function must be declared within every Order.

liteRoast Page 5 of 15

An example program:

Declares a new Order named ventiCaramel using the “brew” keyword, which includes two methods:

getTheOrder and our main method. getTheOrder contains parameters which accepts two variables of type

String and Int, respectively., and returns a Boolean value true/false.

1.4.Types and Variables

There are two kinds of types in liteRoast: value types and reference types. Variables of value types
directly contain their data whereas variables of reference types store references to their data, the latter
being known as objects. With reference types, it is possible for two variables to reference the same object
and thus possible for operations on one variable to affect the object referenced by the other variable. See
Section 3 for details.

1.5.Visibility

liteRoast supports both Public and Private visibility for functions, with the keyword “lite” used to denote
Public functions, and “dark” for Private. Variables are also subject to this visibility, but are assumed
Public until otherwise specified.

liteRoast Page 6 of 15

1.6.Statements Differing from Java and Pascal

Statement Example

Expression statement brew Order expressionEx
pour
 brew lite void main()
 toppings
 syrup firstInitial;
 syrup secondInitial;
 sugar fullName;
 pour
 firstInitial := “A”;
 secondInitial := “H”;
 fullName := firstInitial + secondInitial;
 receiptln(fullName);
 sip
sip

if statement brew Order ifEx
pour
 brew lite void main()
 Toppings
 Cream firstNum;
 Cream secondNum;
 pour
 firstNum := 5;
 secondNum := 7;
 if(firstNum == secondNum) then
 receiptln(“first number is equal to second”);
 else
 firstNum := 7;
 receiptln(“first number is NOT equal to second”);
 sip
sip

For statement brew Order forEx

pour

 brew lite void main()

 toppings

 blend S;

 cream i;

 pour

 numbers := [1, 2, 3, 4, 5, 8, 9, 10];

 for (i := 1 to S.flavor()) do

 receiptln(“Current number: “ + numbers[i]);

 sip

 sip

sip

liteRoast Page 7 of 15

While statement brew Order whileEx
pour
 brew lite void main()
 toppings
 Grounds newNumbers;
 Cream i;
 pour
 i := 1;
 newNumbers := [10, 20, 30, 40, 20, 60, 80];
 While (newNumbers[i] != 60) do
 receiptln(“Current number is “ + newNumbers[i]);
 i++;
 sip
 sip
sip

Comments Brew Order wheresthefiller
Pour
 Brew lite void main()

 \/D~ Toppings to initialize our ingredients
 We’re still in a comment here, so I can say whatever I want!
 I love coffee ~\/D
 toppings
 cream cawfee;
 cream greentea;
 pour
 cawfee := 20; \/D initialize cawfee to 20
 greentea = 30; \/D initialize green tea to 30

 \/D~ If we’ve got more coffee, print a message
 else say we’ve got more green tea
 ~\/D
 if (cawfee > greentea) do
 receiptln (“I’d like some more coffee”);
 else
 receiptln(“I’d like some more green tea”);
 sip \/D end our main function
sip

liteRoast Page 8 of 15

2.Lexical structure

2.1.Programs

A liteRoast program consists of one or more source files. A source file is an ordered sequence of

(probably Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into

a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2.Grammars

This specification presents the syntax of the liteRoast programming language where it differs from Java

and Pascal.

2.2.1.Lexical grammar (tokens) where different from Java and Pascal

<Assignment Operator> → :=

<Math Operator> → + | * | / | -

<Print> → receipt() | receiptln()

<Boolean Operator> → == | != | <= | >=

<Open Block> → pour

<Close Block> → sip

<Single-Line Comment> → \/D

<Delimited Comment> → \/D~ | ~\/D

<int, float, double> → cream

<string> → sugar

<char> → syrup

<array> → blend

<arraylength> → flavor

2.2.2.Syntactic (parse”) grammar where different from Java and Pascal

<Order declaration> → Order <Identifier>

<Function Declaration> → brew <visibility> <object type> <identifier> <parameter list> | brew

<visibility> <object type> <identifier>

<Blend declaration> → blend <object type> <identifier>

<Parameter> → <object type> <identifier>

liteRoast Page 9 of 15

2.3.Lexical analysis

2.3.1.Comments

liteRoast supports two forms of comments: single-line comments and delimited comments.

- Single-line comments start with the characters \/D (representing a nice cup of joe) and extend to

the end of the source line.

- Delimited comments start with the characters \/D~ and end with the characters ~\/D. Delimited

comments may span multiple lines.

Comments do not nest – attempting to do so will ruin the drink.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space

and comments are not tokens, though they act as separators for tokens where needed.

tokens:
identifier
keyword

cream-literal
syrup-literal
sugar-literal

 iced-literal
operator-or-punctuator

2.4.1.Keywords different from Java and Pascal

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier

except when prefaced by the @ character.

New keywords:
Order, brew, pour, sip, lite, dark, iced, sugar, cream, syrup,

receipt, flavor, blend

Removed keywords:

Class, new, Public, Private, begin, end, bool, string, int, float,
double, char, print, println, length, size, array

liteRoast Page 10 of 15

3.Type System

liteRoast uses a strong static type system – variables are declared as a specific type and cannot be

transmuted to any other type. Strong typing means that type errors are caught and expressed to the

programmer during compilation. Static typing means early binding compile-time type checking.

3.1.Type Rules

The type rules for liteRoast are as follows:

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 := e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 != e2: boolean

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 == e2: boolean

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 != e2: boolean

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 == e2: Boolean

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 < e2: boolean

liteRoast Page 11 of 15

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 * e2: T

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 + e2: T

liteRoast types are divided into two main categories: Value types and Reference types:

3.2.Value types (different from Java and Pascal)

Cream – any real number, positive or negative. Decimals points are considered when combining cream

variables (ex. Adding 1 + 3.5 would have liteRoast treat the first cream as 1.0).

Syrup – a single Unicode character. Able to be concatenated to another syrup variable or to any available

sugar variables.

Iced – Do we want our coffee served hot or with ice? Binary value that returns true or false depending on

the customer’s specifications.

3.3.Reference types (differing from Java and Pascal)

Sugar – Sequence of syrup variables with a non-fixed length. Able to be concatenated through other sugar

or syrup variables.

Blend – container object that holds a fixed amount of variables of a certain type. Since the art of brewing

is a dangerous and highly precise practice, the specific blend of ingredients we initialize is fixed length

and cannot be changed.

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 > e2: boolean

S ⊢ e1: T

S ⊢ e2: T

T is a Primitive type

S ⊢ e1 / e2: T

liteRoast Page 12 of 15

4.Example Programs

1. Caesar Cipher encrypt / decrypt

2. Factorial

liteRoast Page 13 of 15

3. Bubble Sort

liteRoast Page 14 of 15

4. Insertion Sort

liteRoast Page 15 of 15

5. Quick Sort

