
© 2006 Douglas Crockford

The Misconceived Web
•  The original vision of the WWW was as

a hyperlinked document-retrieval
system.

•  It did not anticipate presentation,
session, or interactivity.

•  If the WWW were still consistent with
TBL's original vision, Yahoo would still
be two guys in a trailer.

How We Got Here

• Rule Breaking

• Corporate Warfare

• Extreme Time Pressure

The Miracle

•  It works!

•  Java didn't.

• Nor did a lot of other stuff.

The Scripted Browser
•  Introduced in Netscape Navigator 2

(1995)

•  Eclipsed by Java Applets

•  Later Became the Frontline of the
Browser War

•  Dynamic HTML

•  Document Object Model (DOM)

Proprietary Traps
• Netscape and LiveWire

• Microsoft and Internet Information
Services

• Both server strategies frustrated
by Apache

• Browser-dependent sites

Pax Microsoft
•  In the years since the end of the Browser

War, the number of browser variations in
significant use fell off significantly.

•  W3C attempts to unify.

•  Mozilla abandoned the Netscape layer model
in favor of the W3C model.

•  The browser platform becomes somewhat
stable.

•  DHTML becomes known as Ajax.

Browser

Scripted Browser

The A List

• Firefox 1.5
• Firefox 2.0
• Safari 2
• IE 6
• IE 7
• Opera 9

•  http://developer.yahoo.com/yui/articles/gbs/gbs_browser-chart.html

<script></script>
•  <!-- // -->

Hack for Mosaic and Navigator 1.0.

•  language=javascript
Deprecated.

•  src=URL
Highly recommended.
Don't put code on pages.

•  type=text/javascript
Ignored.

<script></script>

•  Script files can have a big impact on
page loading time.

1.  Place <script src> tags as close to
the bottom of the body as possible.
(Also, place CSS <link> as high in the
head as possible.)

2.  Minify and gzip script files.

3.  Reduce the number of script files as
much as possible.

document.write

•  Allows JavaScript to produce HTML
text.

•  Before onload: Inserts HTML text into
the document.

•  After onload: Uses HTML text to
replace the current document.

•  Not recommended.

Collections
•  document.anchors
•  document.applets
•  document.embeds
•  document.forms
•  document.frames
•  document.images
•  document.plugins
•  document.scripts
•  document.stylesheets

•  Avoid these.

name v id

• name=
Identifies values in form data
Identifies a window/frame

• id=
Uniquely identifies an element

• They used to be interchangeable.

document.all

• Microsoft feature, rejected by
W3C and most other browsers.

•  It acts as a function or array for
accessing elements by position,
name, or id.

• Avoid it.

Retrieving Nodes

document.getElementById(id)

document.getElementsByName(name)

node.getElementsByTagName(tagName)

Document Tree Structure
document

document.body

document.
documentElement

child, sibling, parent

child, sibling, parent

child, sibling, parent

child, sibling, parent

Walk the DOM
•  Using recursion, follow the firstChild

node, and then the nextSibling nodes.

 function walkTheDOM(node, func) {
 func(node);
 node = node.firstChild;
 while (node) {
 walkTheDOM(node, func);
 node = node.nextSibling;
 }

 }

getElementsByClassName

function getElementsByClassName(className) {
 var results = [];
 walkTheDOM(document.body, function (node) {
 var a, c = node.className, i;
 if (c) {
 a = c.split(' ');
 for (i = 0; i < a.length; i += 1) {
 if (a[i] === className) {
 results.push(node);
 break;
 }
 }
 }
 });
 return results;
}

childNodes

Manipulating Elements
IMG has these properties:

•  align 'none', 'top', 'left', ...
•  alt string
•  border integer (pixels)
•  height integer (pixels)
•  hspace integer (pixels)
•  id string
•  isMap boolean
•  src url
•  useMap url
•  vspace integer (pixels)
•  width integer (pixels)

node.property = expression;

Manipulating Elements
•  Old School

if (my_image.complete) {
 my_image.src = superurl;
}

•  New School

if (my_image.getAttribute('complete')) {
 my_image.setAttribute('src', superurl);
}

Style
node.className

node.style.stylename

node.currentStyle.stylename Only IE

document.defaultView().
 getComputedStyle(node, "").
 getPropertyValue(stylename);

Style Names
CSS

•  background-color
•  border-radius
•  font-size
•  list-style-type
•  word-spacing
•  z-index

JavaScript

•  backgroundColor
•  borderRadius
•  fontSize
•  listStyleType
•  wordSpacing
•  zIndex

Making Elements
document.createElement(tagName)

document.createTextNode(text)

node.cloneNode()
Clone an individual element.

node.cloneNode(true)
Clone an element and all of its descendents.

•  The new nodes are not connected to the
document.

Linking Elements

node.appendChild(new)

node.insertBefore(new, sibling)

node.replaceChild(new, old)

old.parentNode.replaceChild(new, old)

Removing Elements

node.removeChild(old)
It returns the node.
Be sure to remove any event handlers.

old.parentNode.removeChild(old)

innerHTML
•  The W3C standard does not provide

access to the HTML parser.

•  All A browsers implement Microsoft's
innerHTML property.

Which Way Is Better?
•  It is better to build or clone elements

and append them to the document?

•  Or is it better to compile an HTML text
and use innerHTML to realize it?

•  Favor clean code and easy
maintenance.

•  Favor performance only in extreme
cases.

Events
•  The browser has an event-driven,

single-threaded, asynchronous
programming model.

•  Events are targeted to particular
nodes.

•  Events cause the invocation of event
handler functions.

Mouse Events
•  The target is the topmost (z-index)

node containing the cursor.

•  click
•  dblclick
•  mousedown
•  mousemove
•  mouseout
•  mouseover
•  mouseup

Input Events
•  The target is the node having focus.

•  blur
•  change
•  focus
•  keydown
•  keypress
•  keyup
•  reset
•  submit

Event Handlers
•  Classic

node["on" + type] = f;

•  Microsoft
node.attachEvent("on" + type, f);

•  W3C
node.addEventListener(type, f, false);

Event Handlers

• The handler takes an optional
event parameter.
 Microsoft does not send an event

parameter, use the global event
object instead.

Event Handlers
function (e) {
 e = e || event;
 var target =
 e.target || e.srcElement;
 ...
}

Trickling and Bubbling

• Trickling is an event capturing
pattern which provides
compatibility with the Netscape 4
model. Avoid it.

• Bubbling means that the event is
given to the target, and then its
parent, and then its parent, and so
on until the event is canceled.

Why Bubble?
• Suppose you have 100 draggable

objects.

• You could attach 100 sets of
event handlers to those objects.

• Or you could attach one set of
event handlers to the container of
the 100 objects.

Cancel Bubbling
•  Cancel bubbling to keep the parent

nodes from seeing the event.

 e.cancelBubble = true;
 if (e.stopPropagation) {
 e.stopPropagation();
 }

•  Or you can use YUI's cancelBubble
method.

Prevent Default Action
•  An event handler can prevent a browser

action associated with the event (such as
submitting a form).

 e.returnValue = false;
 if (e.preventDefault) {
 e.preventDefault();
 }
 return false;

•  Or you can use YUI's preventDefault method.

Memory Leaks

• Memory management is
automatic.

•  It is possible to hang on to too
much state, preventing it from
being garbage collected.

Memory Leaks on IE 6
•  Explicitly remove all of your event

handlers from nodes before you discard
them.

•  The IE6 DOM uses a reference counting
garbage collector.

•  Reference counting is not able to
reclaim cyclical structures.

•  You must break the cycles yourself.

Memory Leaks on IE 6
• That was not an issue for page

view-driven applications.

•  It is a showstopper for Ajax
applications.

•  It will be fixed in IE7.

Memory Leaks on IE 6
• Remove all event handlers from

deleted DOM nodes.

•  It must be done on nodes before
removeChild or replaceChild.

•  It must be done on nodes before
they are replaced by changing
innerHTML.

Breaking Links in the DOM
function purgeEventHandlers(node) {
 walkTheDOM(node, function (e) {
 for (var n in e) {
 if (typeof e[n] ===
 'function') {
 e[n] = null;
 }
 }
 });
}

•  Or you can use YUI's purgeElement method.

JavaScript
• alert(text)
• confirm(text)
• prompt(text, default)

These functions break the
asynchronous model.

Avoid these in Ajax applications.

• setTimeout(func, msec)
• setInterval(func, msec)

window

• The window object is also the
JavaScript global object.

• Every window, frame, and iframe
has its own unique window object.

•  aka self. And sometimes parent
and top.

Inter-window
•  frames[] Child frames and iframes
•  name Text name of window
•  opener Reference to open
•  parent Reference to parent
•  self Reference to this window
•  top Reference to outermost
•  window Reference to this window

•  open() Open new window

Inter-window

• A script can access another
window if
It can get a reference to it.
document.domain ===
otherwindow.document.domain

• Same Origin Policy

Cross Browser

• Weak standards result in
significant vendor-specific
differences between browsers.

• Browser Detection.
•  Feature Detection.
• Platform Libraries.

Browser Detection
•  Determine what kind of browser that

page is running in.

•  Execute conditionally.

•  The browsers lie.
navigator.userAgent Mozilla/4.0

•  Brittle. Not recommended.

•  http://www.mozilla.org/docs/web-developer/sniffer/browser_type.html

Feature Detection
•  Using reflection, ask if desired features are present.

•  Execute conditionally.

function addEventHandler(node, type, f) {
 if (node.addEventListener) {
 node.addEventListener(type, f, false);
 } else if (node.attachEvent) {
 node.attachEvent("on" + type, f);
 } else {
 node["on" + type] = f;
 }
}

Feature Detection
•  Using reflection, ask if desired features are present.

•  Execute conditionally.

function addEventHandler(node, type, f) {
 node["on" + type] = f;
}

 YAHOO.util.Event.addListener(node, type, f);

•  Support for custom events, and for adding events to
object that don't exist yet, and for purging event
handlers from objects.

Use a Platform Library

• A platform library insulates the
application from the poisonous
browsers.

• YUI is highly recommended.

• http://developer.yahoo.com/yui/

The Cracks of DOM
•  The DOM buglist includes all of the

bugs in the browser.

•  The DOM buglist includes all of the
bugs in all supported browsers.

•  No DOM completely implements the
standards.

•  Much of the DOM is not described in
any standard.

Coping

1.  Do what works.

2.  Do what is common.

3.  Do what is standard.

The Wall
• Browsers are now being push to

their limits.

• Be prepared to back off.

• Reduce your memory
requirements.

• Balance of client and server.

The Hole
•  The browser was not designed to be a

general purpose application platform.

•  Lacks a compositing model.

•  Accessibility suffers.

•  Lacks support for cooperation under
mutual suspicion.

The Peace is ending.

WWW War II

• Microsoft has awoken. They are
beginning to innovate again.

• There are now 4 major browser
makers.

• They will be flooding the web with
bugs.

We Will Prevail

• We must use our clout to keep the
browser makers in line.

• We must be players, not pawns.

• We must set the standards.

References
•  The Document Object Model in Mozilla

http://www.mozilla.org/docs/dom/
•  MSDN HTML and DHTML Reference

http://msdn.microsoft.com/workshop/author/dhtml/
reference/dhtml_reference_entry.asp

•  Introduction to Safari JavaScript
Programming Topics
http://developer.apple.com/documentation/

AppleApplications/Conceptual/SafariJSProgTopics/
index.html

•  Document Object Model (DOM) Level 2 Core
Specification
http://www.w3.org/TR/DOM-Level-2-Core/

