
Managing Data. . . and Covid

An Experience Report
Alan G. Labouseur

Alan.Labouseur@Marist.edu
Marist College

Poughkeepsie, NY, USA

ABSTRACT

The Covid-19 pandemic presented a vast array of challenges for
professors and students theworld over. Aswe navigate Covid’s long
tail, many challenges remain. Those challenges – nasty as they are
– can be recast in a constructive light and imbued with pedagogical
significance as practical, common-ground motivational tools for
teaching topics in data management. The author has done just
that. In addition to teaching on full-time faculty in the Computer
Science department at Marist College, he was a key member of their
Covid-19 screening team. After designing and implementing data
management systems for generating representative samples of the
college population for surveillance testing, results tracking, and
compliancemonitoring, he used those experiences in new, hands-on
ways to integrate data management theory with real-world practice
in his classes. This experience report – wherein the author explains
this journey and notes lessons learned – is an example of how, even
once this pandemic has receded fully into the past, experiences like
these can provide opportunities for educators to incorporate timely
topics into their data management courses.

CCS CONCEPTS

• Social and professional topics → Computing education; •
Information systems→Database design andmodels;Database
management system engines; Database views.

KEYWORDS

Motivation and Engagement, Practice and Theory, Undergraduate
Data Management Courses
ACM Reference Format:

Alan G. Labouseur. 2022. Managing Data. . . and Covid An Experience Report.
In 1st International Workshop on Data Systems Education (DataEd’22), June
17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3531072.3535328

1 INTRODUCTION

Students commonly complain that their courses lack “real world” ap-
plications. As teachers, we are always looking for authentic, hands-
on ways to address this and better reach our students. While the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DataEd’22, June 17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9350-8/22/06. . . $15.00
https://doi.org/10.1145/3531072.3535328

Covid-19 pandemic presented many challenges, it also presented
new and meaningful ways to inform data management theory with
real-world practice in an immediate and authentic manner. (See the
author’s prior work [2] for details on applying Covid experiences
to Algorithms and Operating Systems courses too.) This was not a
one-time thing. New variants and ever-changing response models
have been keeping us on our collective toes for a while. And since
it looks like Covid may persist for some time, we might as well
make the best of it.

As a member of the Covid testing team at Marist College1, I
designed and implemented database systems for generating repre-
sentative samples of the college population for surveillance testing,
recording test results, and monitoring testing compliance. My ex-
perience in real-world testing and tracking revealed new ways to
inform data management theory with practice. This experience
report presents my efforts to use it to motivate and illustrate core
concepts in an undergraduate data management course, covering
aspects of SQL, database design, and stored procedure program-
ming, all in an immediate and authentic manner made possible by
the fact that faculty and students were living the same first-hand
experience in real time.

2 BACKGROUND

Many aspects of the Covid-19 pandemic could be used as examples
for teaching data management. There are, for instance, several ways
we might make use of graph databases (for disease spread models
and exploring graph algorithms for computing traits like network
density, maximum cliques, connected components, clustering coef-
ficients, and the like). Those seem like productive topics but I chose
to focus on a different area: Covid testing.

2.1 Covid Testing on Campus

A team of healthcare professionals, faculty, staff, and administrators
conducted Covid screening via pooled surveillance testing [1]. As
part of that team I incorporated several aspects of this endeavor
into my data management classes. Generating daily representative
samples of people from our community and tracking their compli-
ance (because, believe it or not, every day there were people who
skipped their test) provided a vivid landscape for discussing SQL
queries, functions, subqueries, joins, and views as well as relational
database design and stored procedure programming.

At the beginning of each semester I received a snapshot of stu-
dent and employee data from Banner, our higher education ERP
system, which I imported into the PostgreSQL object-relational
database in a table called People, shown in Figure 1. A month or so

1I was among only three people at Marist approved for access to this sensitive data.

https://orcid.org/0000-0001-7403-0761
https://doi.org/10.1145/3531072.3535328
https://doi.org/10.1145/3531072.3535328
https://doi.org/10.1145/3531072.3535328

DataEd’22, June 17, 2022, Philadelphia, PA, USA Alan G. Labouseur

Figure 1: The People table in PostgreSQL (originally published

in [2])

into surveillance testing it became clear that more attributes were
needed, which I added, as noted in Figure 1c.

3 SQL

With our People data in place – and purposefully ignoring any
design issues until later – we began discussions of elementary SQL.

3.1 Simple Queries

There are a plethora of obvious and simple queries to use here, e.g.,
on-campus computer science majors:
select lastName, firstName
from People
where isStudent

and livesOnCampus
and major = 'Computer Science';

We would revisit this query later to illustrate the power of views.
Seeing this query in its original context helped ground our discus-
sion of query rewriting and view execution later on.

3.2 Aggregate Functions

Though I did not find many uses for MIN, MAX, or AVG, there were
opportunities for COUNT and SUM.
-- Students and non-students
select isStudent, count(pid)
from People
group by isStudent
order by isStudent ASC;

-- People who are both a student AND an employee
select count(pid)
from People
where isStudent and isEmployee;

-- People living on campus
select sum(subtotal)
from (select dormBuilding, dormFloor,

count (pid) as subtotal
from People
where livesOnCampus
group by dormBuilding, dormFloor
order by dormBuilding, dormFloor) sub1;

In addition to exemplifying the use of GROUP BY and ORDER BY,
these queries provided a good place to warn students about the
effects of NULL on aggregate functions and why we wanted to
count pids instead of rows using COUNT(*). Students tend to have
a difficult time with NULL, three-value logic, the need for the is
operator, and what coalesce does. Exploring examples like this
early on help clarify the theory with relatable practice. We would
return to the annoyances resulting from NULLs2 when discussing
database design later on, and in the context of subqueries next.

3.3 Subqueries

The use of subqueries is a convenient way to begin showing stu-
dents how to query data from multiple tables. It is also a natural
place to talk about operators like in (see below) and exists (as
well as their negations) and a useful segue into the set operations
of union, intersection, and difference.

With simple queries and aggregate functions already in their
SQL “toolbox”, subqueries present an opportunity to introduce the
idea of combining newly learned SQL elements with those that stu-
dents already know. The query below illustrates this by combining
aggregate functions and coalescing NULLs into a subquery, then
grouping and ordering the results.

-- Exclusion counts by month of re-inclusion
select count(pid), extract(month from excludeStop)::text

|| ' - ' || coalesce(to_char(to_date(
(extract(month from excludeStop)::text),'MM'), 'Month'),

'No re-inclusion date') as "ReIncludeMonth"
from Excludes
where pid in (select pid from People)
group by "ReIncludeMonth"
order by "ReIncludeMonth" ASC;

If we are not careful combining tables with subqueries we can get
wacky and nonsensical result sets. Addressing this makes for a
good segue into primary and foreign keys, referential integrity, and
strong vs. weak entities. Calling back to the annoyances of NULLs
naturally motivates bringing up entity subtypes, which we discuss
later in the semester (and later in this paper, in Section 4).

2See my Stack Overflow discussion for more on NULL behavior: https://stackoverflow.
com/questions/5834471/

https://stackoverflow.com/questions/5834471/
https://stackoverflow.com/questions/5834471/

Managing Data. . . and Covid DataEd’22, June 17, 2022, Philadelphia, PA, USA

3.4 Joins

With the students’ SQL “toolbox” getting fuller, it was finally time
to introduce joins through the use case of monitoring testing com-
pliance. We tested and tracked students by clusters of dormitories,
which makes for a simple inner join query:

select d.building, p.*
from People p inner join Dorms d

on p.dormBuilding = d.building
order by d.building ASC, p.lastName ASC;

Cross-referencing students to their dorms made for a join example
everybody could relate to. Skipping a surveillance testing appoint-
ment was another example that students could (sadly) relate to.

-- Students who were selected for testing
-- but remain UNtested according to the lab results.
select d.cluster, p.dormBuilding, count(pid) as "UNtested"
from People p inner join Dorms d

on p.dormBuilding = d.building
where p.livesOnCampus and p.isStudent

and selectedForTesting is not null
and not p.previouslyTested

group by d.cluster, p.dormBuilding
order by dayNameToDayNumber(d.cluster) ASC,

p.dormBuilding ASC;

That query contains a user-defined function, “dayNameToDayNum-
ber”, which I did not cover in class, but which could, I think, be
incorporated into a discussion of stored procedures. (See Section 5.)

Members of our community would get excluded from testing for
various reasons (e.g., players on a traveling sports teams, off-campus
interns, our ever-changing quarantine population). To analyze test
results for only active members of our population we would use an-
other inner join, this time in combination with case-variant column
output, an aggregate function, and that user-defined function.

-- Tested and UNtested ON-CAMPUS students by cluster/dorm
select d.cluster, p.dormBuilding,

case
when previouslyTested then 'tested'
when not previouslyTested then 'UNtested'

end as "tested?", count(pid)
from People p inner join Dorms d

on p.dormBuilding = d.building
where p.livesOnCampus and p.isStudent
group by d.cluster, p.dormBuilding, "tested?"
order by dayNameToDayNumber(d.cluster) ASC,

p.dormBuilding ASC, "tested?" DESC;

For overall tracking we wanted everybody who was ever tested
cross-referenced with the data from the People table. Since we
want all of the already-tested population, but some may have been
excluded, an outer join is called for.

-- Already tested at least once
select p.*
from alreadyTested t left outer join People p

on t.id = p.pid;

3.5 Views

To illustrate the utility of views, we created them for OnCampusStu-
dents, OffCampusStudents, and Employees.
create or replace view OnCampusStudents
as
select lastName, firstName
from People
where isStudent

and livesOnCampus;

With these views in hand I had my students look at some of their
earlier queries with instructions to use the views instead of base
tables:
select lastName, firstName
from OnCampusStudents
where major = 'Computer Science';

This led to a discussion of view definitions being stored in the
system catalog and an illustration of query rewriting. With this
background, we wrote more views that would help simplify reason-
ing about members of our campus community who were currently
excluded from testing.
create or replace view CurrentlyExcluded
as
select pid
from Excludes
where excludeStop is null

or now()::date between excludeStart and excludeStop;

Wewould revisit the People table in the context of stored procedures
later on. But before we could do that we would take up relational
database design and address some of the People table’s pressing
deficiencies.

4 RELATIONAL DATABASE DESIGN

The deficiencies of the People table were made clear by the pres-
ence of NULLs in the data due to some attributes being relevant
only to certain rows. This informed our initial database design
discussions. After covering the normal forms and developing an
appreciation for Codd and his rules, we looked to revise the People
table. It was now apparent that there are multiple (sub)types of
people and that we have a few different attributes for each. The fact
that student-only and employee-only views eased query writing
provided an excellent opportunity to introduce entity subtypes and
their implementation as one-to-one relationships with optional par-
ticipation on the subtype side. (This also proved to be a good time
to note the use of a primary key simultaneously as a foreign key
in the subtype tables.) We factored out the student and employee
attributes from the People table as noted in Figures 1a and 1b into
subtype entities. Having done this, we noted that we no longer
needed the isStudent and isEmployee attributes, that functionality
now being accomplished via pid membership in the new entity
subtype tables. This led to a discussion of logical data independence,
demonstrated by rewriting the OnCampusStudents, OffCampusStu-
dents, and Employees views to make use of the new subtype tables
and then executing unchanged our earlier queries against those
revised views.

DataEd’22, June 17, 2022, Philadelphia, PA, USA Alan G. Labouseur

Figure 2: A portion of a PL/pgSQL stored procedure (originally

published in [2])

5 STORED PROCEDURE PROGRAMMING

Near the end of the semester, armed with a full SQL “toolbox”, we
considered how to generate representative samples of our commu-
nity for Covid screening. Figure 2 shows (most of) the PL/pgSQL
code for pseudo-randomly selecting on-campus students who had
not been recently tested or recently selected for testing, grouped
by dormitory clusters. (The code for selecting off-campus students
and employees is substantially similar, and excluded in the interest
of space and anti-redundancy.) This code was used to demonstrate
many features of stored procedures: local variable declaration and
usage, date functions, (nested) for loops, advanced SQL inside of
control structures, table manipulation, and the need for good for-
matting and comments to make sense of it. My students felt strongly
connected to this because, by this time in the semester, all of them
had been selected for Covid screening by this very code.

As mentioned in Section 3.4, it is natural to bring up user-defined
functions in the same context as stored procedures (though their
details are a bit different). Figure 3 shows the code for the “day-
NameToDayNumber” function we used in the section on joins. It
was quite useful in ORDER BY clauses to impose a natural weekday
order on query results.

Figure 3: A PostgreSQL user-defined function

6 CONCLUSION

All told, this material addressed many areas of the “IM/Database
Systems and IM/Data Modeling Core-Tier2” component of the ACM
Computer Science Curricula 2013 Body of Knowledge in a practical
and meaningful way. It is no surprise that circumstances affecting
all of us should be well suited to motivate various topics in our data
management courses. After a few semesters, my experience bears
this out, and it aligns with the opinions of my students. This quote
from a recent student puts it nicely:

I wanted to thank you for an interesting and academ-
ically engaging semester. . . . But most of all I really
appreciated how you connected the material in the
course to the pandemic instead of just pretending it
was a regular semester. The connection of CS courses
to the real world has been something I have wanted
to see more of in my classes so I really enjoyed that
factor of the semester project. – Maria

6.1 Online Resources

Much of my SQL and PL/pgSQL source code (but none of the data)
is available on GitHub at
https://github.com/Labouseur/CovidInTheClassroom
You are welcome and encouraged to use it. . . and to improve it.

ACKNOWLEDGMENTS

I sincerely thank Dean Roger Norton of the School of Computer
Science andMathematics for suggesting the use of myCovid testing
work as the basis for this and other papers. Heartfelt thanks also
go out to Dean Alicia Slater of the School of Science for trusting
me with all that sensitive data, answering every question I had, and
allowing me to be her sidekick in fighting this pandemic.

REFERENCES

[1] Ding-zhu Du and Frank K Hwang. 2000. Combinatorial Group Testing and its
Applications (2nd ed.). Vol. 12. World Scientific, USA.

[2] Alan G Labouseur. 2021. COVID in the Classroom. ACM Inroads 12, 3 (2021),
32–38.

https://github.com/Labouseur/CovidInTheClassroom

	Abstract
	1 Introduction
	2 Background
	2.1 Covid Testing on Campus

	3 SQL
	3.1 Simple Queries
	3.2 Aggregate Functions
	3.3 Subqueries
	3.4 Joins
	3.5 Views

	4 Relational Database Design
	5 Stored Procedure Programming
	6 Conclusion
	6.1 Online Resources

	Acknowledgments
	References

