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Abstract

This paper demystifies the advanced computer science topic of block-
chain by placing it in the context of course and content development. In
presenting suggestions for using blockchain as a tool to teach core com-
puter science concepts, the authors reflect on student-centered, research-
based projects spent understanding blockchain and developing an el-
ementary implementation. Their experiences led to several teachable
moments applicable to many topics across CS curricula including soft-
ware design, algorithms and data structures, and distributed computing.
The authors discuss many definitions of blockchain filtered through the
philosophical lens of essence and accidents, give a precise definition of
“essential” blockchain, and provide insight to understanding blockchain
by presenting several of its structures and their implementation in the
context of those curricular topics.

1 Introduction

As a buzzword, “blockchain” generates gratuitous hyperbole. Regardless of
whether or not it really is “the next big thing”, and in spite of the fact that
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it is generally mystifying and resists explanation, blockchain presents a use-
ful gateway into teaching core concepts in computer science. In this paper,
we demystify blockchain by discussing its essence and accidents and making
suggestions for using blockchain as a tool to teach core concepts in computer
science.

1.1 Background

Having enjoyed (and endured) several student-centered, research-based experi-
ences spent trying to understand blockchain and develop an elementary imple-
mentation of it, we encountered several teachable moments. We found that we
could provide intuition to aid students’ understanding by relating blockchain-
specific teachable moments to various areas in traditional computer science
curricula. These curricular areas include Software Design (in terms of defining
the problem and discovering its essence and accidents), Algorithms and Data
Structures (including hashing, linked lists, and trees), Distributed Comput-
ing (with issues like cooperating peers and peer discovery), and others (zero-
knowledge protocols, graph theory, and more).

1.2 Contributions and Outline

Using the advanced topic of blockchain to teach core concepts in computer
science is not well covered in existing literature. This paper — a step towards
addressing that deficiency and demystifying blockchain in the process — makes
the following contributions:

e In Section 2 we discuss some difficulties inherent in reasoning about block-
chain and pose a critical question to motivate its exploration in academic
computer science.

e In Section 3 we provide a precise definition of essential blockchain and
suggest its use as a teaching tool.

e In Section 4 we dig into blockchain’s details by exploring its fundamen-
tal nature through a discussion of the historic “essence and accidents”
software design approach in this contemporary context. We also show
examples of essential blockchain structures suitable for use in teaching
several computer science topics.

Finally, Section 5 provides a brief conclusion, links to our blockchain source
code, and comments on our future work.



2 Blockchain Difficulties

In reviewing the literature, we find blockchain difficult to define, difficult to
characterize, and difficult to classify. It’s frustrating. Yet it is within these
difficulties that we also find teaching opportunities.

2.1 Difficult to Define

Block-chain has too many definitions. It has been defined as: “a public
ledger” [17], “a distributed ledger” [16], “a peer-to-peer distributed ledger tech-
nology” [10], “a ledger replication system”, an “incorruptible digital ledger of
economic transactions” [15], “a linked list that is built with hash pointers” [14],
a “terrible [...] database” [7], a “state transition system with a consensus sys-
tem” [5], and a “distributed database of records or public ledger of all trans-
actions or digital events” [6].

How is one to make sense of all these definitions? How can our students dig
through all that noise and arrive at meaningful insight? These are motivating
questions.

2.2 Difficult to Characterize

Blockchain’s characterizations are as varied at its definitions. Blockchain is
“an undeniably ingenious invention” unable to be controlled by a single orga-
nization or fail at a single point [2]. This “disruptive technology...opens the
door for developing a democratic open and scalable digital economy” as well
as presents “tremendous opportunities”. The Bitcoin blockchain “solved fun-
damental problems in a highly sophisticated, original, and practically viable
way” [16].

What does all this mean? Can our students dig through these implications
and still arrive at meaningful insight? These are also motivating questions.

2.3 Difficult to Classify

Just as its definitions are varied and its characterizations wide-ranging, there
are many classifications of many kinds of blockchain. These include “cryp-
tocurrency, private blockchains, permissioned ledgers, distributed tech, or de-
centralized tech” [1]. The common term “Distributed Ledger Technology”
(DLT) further stirs the cauldron of bubbling blockchain brands. Corda, a
“distributed ledger” for financial transactions is a DLT [4], but its whitepaper
explicitly states that, “there is no block chain” instead calling the structures
“notaries” [8]. The Hyperledger Sawtooth documentation, however, claims
that an “enterprise distributed ledger” is the same as a blockchain [9)].



Who are we to believe? Is there meaningful insight at all? These questions
add still more metaphorical fuel to the equally metaphorical (and pedagogical)
fire.

All of these difficulties led us to ask a motivating question: “What is block-
chain?” But then we distilled it to a more important question:

What is essential blockchain?

3 Essential Blockchain

In the context of blockchain history from Bitcoin to Ethereum to Hyperledger,
we build our definition of essential blockchain by first defining its structural
parts.

Definition 1. Transaction — a container for arbitrary data.
Definition 2. Block — a container for one or more transactions.

Definition 3. Blockchain — an ordered, append-only container for one or more
blocks where the it" block b; depends on the prior block bi_1 to confirm b;’s
permanent stasis where i > 1. (We will revisit this idea in Section 4.2.1.)

Given the above definitions, and after examining many Bitcoin, Ethereum,
and Hyperledger use cases, we find that blockchain is an overloaded term be-
cause it’s more than a data structure, it’s also a consensus network of peer
instances of that data structure. Now we have its essence:

Definition 4. Essential Blockchain — a peer-to-peer network of Blockchain
istances cooperating for consensus.

Let’s have a look at some differences between blockchain as a data structure
and blockchain as a consensus network.

3.1 Blockchain as a Data Structure

Blockchain is a data structure in that it is an abstract structure created to hold
information. Satoshi Nakamoto [13], the anonymous inventor(s) of Bitcoin,
the first instance of a blockchain, created blocks to contain monetary exchange
transactions between entities. Blocks in a general blockchain are not limited to
monetary exchanges. The Ethereum blockchain [5], in addition to holding pay-
ment transactions, also contains “smart contracts” that enforce various rules
about various actions on the blockchain. The Hyperledger Fabric [10] block-
chain stores many kinds of data. As one example, the Everledger project [11]
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Figure 1: Block Data Structure with Transaction cutaway detail

maintains a Hyperledger blockchain for the Kimberly process of diamond min-
ing, seeking to insure that none of those diamonds are mined unfairly.

The simplest blockchain data structure is the Transaction (Definition 1),
an example of which is shown in the detail cutaway in Figure 1. A Block (Def-
inition 2) is more complex, and is shown in the main body of Figure 1. Trans-
actions and Blocks contain both essential and accidental attributes. (More on
this in Section 4.1.2.)

3.2 Blockchain as a Consensus Network

Blockchain is a consensus network in that peers in a blockchain network coop-
erate to agree on which blocks of transactions are valid and which are not. To
achieve this, Bitcoin uses a proof of work! mechanism [13] to ensure that Bit-
coin peers who have performed more computational work have more influence
on consensus decisions. Ethereum, likewise, adopted proof of work consensus,
but aims to transition to proof of stake?, in which those with more currency
have more influence over consensus [5]. Hyperledger aims to have “modular,
plug-and-play consensus” [10], meaning it is left to the developers of specific
Hyperledger instances to choose the consensus method best for their needs.

1 Proof of work systems are based on members of the consensus network performing
computationally expensive calculations that are easy to verify to insure the validity of blocks.
This is mining. From Nakamoto’s Bitcoin paper[13]: “The proof-of-work involves scanning
for a value that when hashed . .. begins with a number of zero bits. The average work required
is exponential in the number of zero bits required and can be verified by executing a single
hash.”

2 Proof of stake systems are based on certain members of the consensus network (called
validators) pledging a portion of their assets (their stake) to vouch for the integrity of new
blocks. The more they stake, the more blocks they validate, the more assets they have to
lose if their blocks are found to be invalid.



Regardless of the consensus method, a blockchain cannot be called a block-
chain unless it can also be called a peer-to-peer consensus network.

The duality of blockchain as both a data structure and a consensus network
invites its use in many areas across computer science curricula. The next
section presents a detailed look at a few of those areas.

4 Blockchain in Computer Science Curricula

Our faculty and student researchers developed a rudimentary blockchain imple-
mentation in Java?, initially as an in-memory data structure, adding file-based
persistence later, and eventually building cooperating peers. In doing so, we
discovered that the duality of blockchain as both a data structure and a con-
sensus network makes it a useful teaching tool in many computer science areas,
including the study of software design.

4.1 Software Design

In his famous essay, “No Silver Bullet” [3], Frederick P. Brooks Jr. addresses
some of the difficulties inherent in software development. He points out that
software development bridges the chaotic world of “arbitrary complexity, forced
without rhyme or reason by many human institutions and systems” with the
abstract, yet precise domain software affords. Thus, complexity is software
development’s proverbial “middle name”, and managing that complexity is a
primary software development challenge.

Motivated by the desire to manage complexity while developing a custom
blockchain implementation, we presented our students a fundamental question:
What problem we are trying to solve?

4.1.1 Defining the Problem

Analyzing the landscape of commonly used blockchain “solutions” is daunting
and difficult. As noted in Section 2.1, there are many definitions of block-
chain. This makes generalization a challenge. The difficulty in characterizing
and classifying blockchain systems only makes matters worse. Having found
that blockchain is a fundamentally distributed system (via Definition 4 and
Section 3.2), we assert that applications of blockchain to use cases that are not
fundamentally distributed are wrong. In other words, if we’re using blockchain,
we should be trying to solve problems where multiple decentralized parties need
concurrency, collaboration, cooperation, and fault tolerance. If that is not the

3The source code is freely available and we invite you to use it. See Section 5 for details.



case then we should not use blockchain and would be better served by an exist-
ing, well-established approach like relational, graph, or even NoSQL databases.
We reached and support this conclusion through an exploration of blockchain’s
essence and accidents.

4.1.2 Essence and Accidents

Brooks takes inspiration from the mother of all sciences, philosophy, to ap-
proach complexity. He defines two terms to discuss complexity:

essence Difficulties inherent in the nature of software.

accidents Difficulties that attend its production but are not inherent.

These ideas are not easy to self-appropriate. Instead of conjuring essence
and accidents from the ground up, it is often easier to take something familiar
and strip away accidents until, like a miner extracting precious metals from
muddy rock, essence emerges.

By way of illustration, consider an instance of a coffee cup, in this case
from Starbucks: it has a green logo showing the famous mermaid; it has a
lid; it is made from a cardboard derivative; and it’s filled (one hopes) with
wonderfully-fragrant, rich coffee. But our Starbucks cup need not have its
logo, nor a lid; those features are accidents of the cup. It need not be made
from cardboard, nor does it need to be filled with coffee, as those features
are also accidents. Removing those accidental features (or properties), we are
left with a cylindrical object with the capacity to contain and ability to pour
liquids. This is the essence of a cup...its “cupness”.

We take the same approach with blockchain. By embracing the difficulties
in defining, characterizing, and classifying blockchain over its short history
from Bitcoin to Ethereum to Hyperledger, we can identify its properties and
categorize each of them as essential or accidental in nature. Table 1 shows the
results of this process when applied to Transaction and Block structures in the
context of Definitions 1, 2, and 3.

We note an interesting meta-question about the Block structure: Is the use
of a Merkle tree (discussed in the next section) an accident or is it essential to
a block? It’s certainly a solution to an essential problem of blockchain, but it
is not the only solution. So is it essential or accidental? (That sounds like a
good essay question for our students.)

4.2 Algorithms and Data Structures

Before we can implement blockchain, we must first become familiar with its
structures and some algorithms that work with them. Understanding these



Structure Property Nature

id accidental
. timestamp essential-ish®
transaction .
payload essential
id accidental
hash essential
timestamp accidental-ish®
block previous block’s hash  essential
nonce” accidental
Merkle tree essential?

a The essential or accidental nature of timestamps is unclear. On the
one hand, a transaction or a block clearly comes into existence at some
particular point in time. On the other hand, it may not be essential to
record that.

B A nonce is a value that, when combined with the previous block’s
hash, will result in a new hash that satisfies the proof of work.

Table 1: Blockchain Essence and Accidents

structures and algorithms, along with their common implementations, helps
build fundamental computer science skills necessary to comprehend emerging
technologies such as blockchain. We begin with hashing.

4.2.1 Hashing

Primarily a mathematical concept, hashing requires a hash function, H, that
maps many possible inputs to a smaller number of outputs. There are many
kinds of hash functions. For blockchain, we are particularly interested in cryp-
tographic hash functions. A cryptographic hash function is one that fulfills
these properties [14]:

Collision-resistant It is infeasible to find two values, = and y, such that
x #y, yet H(z) = H(y).

Hiding If a secret value r is randomly chosen from a set of values with equal
probability, then given H(r||z) it is infeasible to find z. (|| represents
concatenation.)

The primary purpose of a cryptographic hash function in blockchain is to
create a “fingerprint” of a given piece of data without revealing any information
about it. This “fingerprint” output from a hash function is commonly called a
digest or a hash.



Most (if not all) blockchains use hashing to achieve the “chain” part of their
nature with hash pointers, which we describe in the next section. Hashing also
provides an efficient method for “confirming permanent stasis” (as noted in
Definition 3) because comparing hash values is a fast, easy, and anonymous*
way to detect whether or not content has been altered since its initial hash.

4.2.2 Linked Lists

A useful and concrete definition of blockchain as a data structure states that,
“A block chain is a linked list that is built with hash pointers.” [14]. A hash
pointer is “a pointer to where data is stored together with a cryptographic
hash of the value of that data at some fixed point in time” [14].

Since linked lists are a fundamental topic in virtually all introductory or
intermediate computer science courses, enhancing them with hash pointers to
support blockchain applications makes for a nice modernization. Combining a
cryptographic primitive such as a hash with a basic data structure like a linked
list enables students to learn computer science fundamentals and emerging
technologies simultaneously. Such teachable moments build understanding of
and excitement for computer science. The excitement continues (one hopes)
into discussions of O(n) operations like list (or blockchain) traversals and linear
searches. Once we've found a target block, we’ll need to do a tree traversal to
find transactions.

4.2.3 Trees

Instead of storing all transactions in a simple list within a block, Satoshi
Nakamoto used a version of a balanced binary tree called a Merkle tree [12, 13].
A Merkle tree is:

binary Nodes have at most two children.

ordered Nodes maintain some ordering appropriate for the data they carry,
e.g., lexicographic or numeric.

balanced For every node, the heights of its subtrees differ by at most 1.
leftmost All nodes are placed as far left as possible.

cryptographically hashed The root and all internal nodes contain the hash
of the content of their children.

4 Anonymous in the “zero knowledge” sense that we can confirm whether or not some
value has changed without knowing the actual value itself.
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Figure 2: Hash Validation of Transactions in a Merkle Tree

This structure allows all transactions within a block to be validated by
a single hash stored at the root of the Merkle tree and called, appropriately
enough, the Merkle root. The node at #1 in Figure 2 is its Merkle root. Note
that it contains a hash of the content of its (left and right) children. They
in turn contain a hash of the content of their children, and so on all the way
down to the penultimate nodes, which contain a hash of the content of (their
children) the leaf nodes, which are the actual transactions. (See Figure 1 for a
closer look at a Transaction.) In this manner, if any transaction 7 in a block
(i.e., any leaf node in a Merkle tree) is altered (e.g., #2 in Figure 2), that node’s
parent (e.g., #3 in Figure 2) will change as well. This change will propagate up
the tree, level by level, until it reaches the root. The root therefore reflects all
changes in the tree so it is the only datum a block needs to validate to confirm
the permanent stasis of the transactions contained therein.

We constructed a Java class called MerkleTree that satisfies the above
properties and accepts any data and any hashing algorithm. This exercise
might be appropriate in a classroom setting as a bridge from simple binary
trees to more complex data structures. It may also be a good way to teach the
importance of choosing an appropriate abstract structure for the task at hand
and determining which properties it must satisfy before implementing it in
code, as bugs are easier to fix while planning than while programming.

Constructing a Merkle tree from an arbitrarily-sized collection of trans-
actions is fairly interesting. The details of such an algorithm are out of the
scope of this paper, but would be very appropriate in an upper-level algo-
rithms course. As Niklaus Wirth said, algorithms plus data structures equals
programs. Tying algorithms to data structures in this manner reinforces the
link between the two and their importance in programming fundamentals.

4.3 Distributed Computing

The essentially distributed nature of blockchain (Definition 4) serves as a nat-
ural example by which to teach topics of networking, routing, and consensus
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algorithms. Our preliminary work used multiple blockchains on one computer
running many JVM instances. This makes for a nice simulation of a distributed
system, as each socket requires an IP address and a port. It’s easy to see how,
for example, 127.0.0.1:2007 exchanging messages with 127.0.0.1:2112 is simi-
lar enough to 172.217.10.78:42 exchanging messages with 137.254.120.50:71 as
not to matter. Once we had that working, we moved with ease to multiple
blockchains on multiple cooperating peers (both physical and virtual).

4.3.1 Cooperating Peers

We devised a rudimentary REpresentational State Transfer (REST) Applica-
tion Programming Interface (API) over Hypertext Transfer Protocol (HTTP)
with a handful of endpoints that cooperating peers use to communicate. These
REST endpoints allow peers to request (1) the entire blockchain, (2) a specific
block in the blockchain, or (3) a specific transaction in the blockchain by using
HTTP verbs with the following paths:

1. GET /blockchain
2. GET /blockchain/{block id}
3. GET /blockchain/transaction/{transaction id}

Peers can POST new transactions with the intention that they be accepted
as soon as possible. But POSTed transactions do not immediately become part
of the blockchain. The peer looking to accept transactions into the blockchain
puts them into its transaction buffer, a container for pending transactions. A
peer mines its buffer when another requests it via the POST /mine endpoint.
This triggers the proof of work mining process. When complete, the previously
buffered transactions officially constitute the next block of the blockchain.

4.3.2 Peer Discovery

Peer discovery is accessed through the REST API endpoint GET /friends. It
provides the IP addresses of known peers on the blockchain network. (A friend
is a peer with whom another peer has communication over the network through
the REST API.) When starting a peer for the first time, the user must list the
IP addresses participating in the blockchain network. This constitutes the
initial friend list for the newly-started peer. The network effect of requesting
the friends list of its friends allows peers to discover each other.

While discovering its peers, each node builds a graph of the blockchain net-
work by denoting itself as a from vertex and its friends as one-hop to vertices.
This process is repeated for all of the to vertices, but this time with them as
the from vertex. The result of the whole process is a snapshot of the entire

11
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Figure 3: Blockchain network evolution captured through graph snapshots with
output from a query about changing influence

network as a graph. The network will change over time (they all do), provid-
ing a opportunity to visualize and analyze blockchain evolution with a graph
analytics, an example of which is shown in Figure 3.

There is more work to be done, including an implementation of consensus
algorithms as required by Definition 4 and supporting smart contracts. These
are first up in our future work.

5 Conclusions and Future Work

In studying new technologies like blockchain and creating their own imple-
mentation of it, students engage in a holistic learning process bridging theory
and practice that promises to be both challenging and rewarding, not to men-
tion demystifying in terms of the new technology itself. We encourage insti-
tutions to promote this kind of learning and to teach core concepts through
emerging technologies like blockchain. To that end, the source code for our
blockchain implementation is available on GitHub at https://github.com/
Marist-Innovation-Lab/blockchain. All are welcome to take it, use it, and
build on it.

We are pursuing two paths in our future work: implementation and re-
search. On the implementation path, we will be programming consensus algo-
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rithms and adding support for smart contracts. On the research path, having
achieved a network of cooperating blockchain peers and the ability to capture
snapshots of their evolution over time, we will be simulating common network
attacks (man in the middle, denial of service) and uncommon attacks (Sybil
subversion in peer-to-peer networks) so we can test theories of blockchain’s
security characteristics. Both promise to be fun.
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