
A Demonstration of the G* Graph Database System
Sean R. Spillane #, Jeremy Birnbaum #, Daniel Bokser #, Daniel Kemp #, Alan Labouseur #,

Paul W. Olsen Jr. #, Jayadevan Vijayan #, Jeong-Hyon Hwang #, Jun-Weon Yoon ⇤

Department of Computer Science, University at Albany – State University of New York
1400 Washington Avenue, Albany, NY 12222, USA

{seans, jbirn, dbokser, dkemp, alan, polsen, appu, jhh}@cs.albany.edu
⇤ Department of Supercomputing Support, KISTI Supercomputing Center

335 Gwahangno, Yuseong-gu, Daejeon, 305-806, Republic of Korea
jwyoon@kisti.re.kr

Abstract—The world is full of evolving networks, many of

which can be represented by a series of large graphs. Neither

the current graph processing systems nor database systems can

efficiently store and query these graphs due to their lack of

support for managing multiple graphs and lack of essential graph

querying capabilities. We propose to demonstrate our system,

G*, that meets the new challenges of managing multiple graphs

and supporting fundamental graph querying capabilities. G* can

store graphs on a large number of servers while compressing

these graphs based on their commonalities. G* also allows users

to easily express queries on graphs and efficiently executes these

queries by sharing computations across graphs. During our

demonstrations, conference attendees will run various analytic

queries on large, practical data sets. These demonstrations will

highlight the convenience and performance benefits of G* over

existing database and graph processing systems, the effectiveness

of sharing in graph data storage and processing, as well as G*’s

scalability.

I. INTRODUCTION

Graphs model a vast array of networks: social networks,
communications routing systems, road and highway systems,
as well as citation and coauthorship networks. These networks
evolve naturally over time as friends change, routers crash,
bypasses are built, and so on. Many researchers seek to gain
insight into this evolution by analyzing a series of graphs that
are periodic snapshots of a dynamic network [1], [2], [3].

It is important to note that in many cases each snapshot
of a network is considerably similar to its predecessor be-
cause evolution tends to occur gradually. For example, the
state of LinkedIn today and tomorrow will be substantially
similar. Exploiting these commonalities in data storage (see
Section II-A) and computation (see Section II-B) enables us
to achieve high performance. Another crucial observation is
that analysis of large networks typically requires extracting
aggregate information from relevant graphs [1], [2], [3] (see
also Figures 3 and 5). This analysis in general can be expressed
as a sophisticated query that combines graph algorithms and
aggregate data operations.

Existing graph processing systems such as Pregel [4], Gi-
raph [5], Trinity [6] and Neo4j [7], and traditional database
systems such as PostgreSQL [8], do not meet the above
requirements. Current graph processing systems process only
a single graph at a time and are not suited to querying sets of
graphs. On the other hand, relational database systems must

break graph structures into edges that are stored in a relation
and thus require expensive join operations for most graph
analysis tasks [9]. Furthermore, existing graph processing
systems and relational database systems cannot readily take
advantage of commonalities among graphs in their storage and
processing of data.

To remedy the limitations of these systems, we have devel-
oped a new parallel graph database system, G*, that efficiently
stores and queries collections of large graphs. G* can store
graphs on a large number of servers while compressing these
graphs based on the commonalities among them. Furthermore,
G* executes sophisticated graph queries using a network of
operators that process graph data in parallel. To accelerate
queries on multiple graphs, these operators process vertices
and edges once and share the results across relevant graphs.

G*’s shared storage and shared computation abilities make it
unique among graph processing systems. Our demonstrations
will exhibit G*’s unique prowess by showing its:

• performance advantages over relational database systems,
• superiority over current graph processing systems,
• benefits from shared storage and computation over iso-

lated storage and computation, and
• ability to scale.
Our demonstrations will present conference attendees with

data from the Twitter social network [10], Yahoo! server
logs [11], citation and coauthorship networks [12], and gen-
erated binary trees. Attendees will be encouraged to:

• explore and query these data sets by interacting with the
Data Explorer tool (Figure 4),

• monitor the execution of their queries using the System
Viewer (Figure 6), and

• compare and contrast their results with others using the
Query History Viewer (Figure 7).

In the remainder of this demonstration proposal, we present
an architectural overview of G* and outline our graph data
storage and query processing techniques (Section II). In Sec-
tion III, we describe the demonstration environment, demon-
stration interface, and several specific demonstration scenarios.

II. SUMMARY OF G*
As Figure 1 illustrates, G* is composed of a collection

of servers managed by a master server. When a query is

Query
Parser

Query
Optimizer

Query
Coordinator

query
network

execution
plan

G* master

query

Communication Layer

Graph Manager
Memory Buffer

Disk

Index

Query Execution Engine

HA

Communication Layer

network

......
Graph Manager

Memory Buffer

Disk

Index

Query Execution Engine

HA

Communication Layer

α β

control

data controldata control

Fig. 1. G* Architecture

c

d

e

e

f

CGI

c1

{G1,+G2}{G1} {G2,+G3} {G3}

c2 e1 d1 d2 f1

c de f

c c e d d f

G2G1 G3
G1

G2

G3

c

d

c

d disk

c e d f

(a)
(b)

(c)

Fig. 2. Compact Storage and Indexing of Graphs G1, G2, and G3

submitted to the master, it is first translated by the query
parser into an operator network, which in turn is transformed
into an optimized execution plan by the query optimizer. The
query coordinator creates and runs operators on other servers
via their query execution engines. An operator on a server
may get data from the server’s graph manager, which fetches
them from that server’s memory and disk, or from other
operators (Figure 3). Data are sent between servers via the
communication layer. The high availability module performs
tasks for detecting and recovering from server failures. Sec-
tion II-A describes how the graph manager on each server
efficiently stores and retrieves its portion of the graph data.
Section II-B explains how the query coordinator and query
execution engines collaborate to efficiently process queries on
multiple graphs.

A. Compact Storage of Graphs

G* assigns a vertex and its outgoing edges to the same
server for high data locality, which allows the server to access
all of a vertex’s edges without contacting other servers. When
multiple graphs represent a network at different points in time,
these graphs may contain a large number of common vertices
and edges. Therefore, each G* server tracks the variation of
each vertex and its edges while saving one version of them
on disk for all of the graphs in which they do not vary. For
example, in Figure 2, vertex d remains the same in graphs
G1 and G2. Therefore, that version of d (denoted as d1 in
Figure 2) is stored only once on disk (see (a)). When vertex

Fig. 3. Average Degree Computation on Graphs G1, G2, and G3

d in graph G3 obtains an edge to vertex f , a new version of
d (denoted as d2) is stored on disk (b). For space efficiency,
vertex versions share common attributes and edges (i.e., only
the difference between versions is stored on disk each time).
Therefore, in Figure 2, the attribute values of vertex d (e.g.,
the address of a server or a person) are stored only once (c)
and shared across versions d1 and d2.

To quickly access the vertex versions which are stored on
disk, we developed an index that stores only one (vertex
ID, disk address) pair for each vertex version. This index,
called the Compact Graph Index (CGI), keeps the (vertex ID,
disk address) pair of a vertex version (e.g., c2 in Figure 2)
in a collection for the combination of graphs that contain
that vertex version (e.g., {G2, G3}). Due to the deduplicated
storage of vertex IDs, graph IDs, and disk addresses, the CGI
can be kept fully or mostly in memory, enabling fast lookups
and updates. To limit the overhead of tracking too many
graph combinations, we also developed a technique that groups
graphs and then separately indexes each group of graphs [13].

B. Efficient Query Execution on a Set of Graphs

Just as we can remove redundancy via shared storage
of graph data, we can also remove redundancy via shared
processing of graph data. Given a query on a set of graphs,
G* constructs an operator network that consumes the vertices
and edges from these graphs, filtering and synthesizing data
into information (Figure 3). Using the CGI to determine
which vertices and edges are shared among these graphs, G*
operators process those vertices and edges only once, which
eliminates any redundancy in computation.

Figure 3 illustrates the operations involved in taking the
average vertex degree for graphs G1, G2 and G3. The Vertex

operator emits tuples that contain the attribute values of a
vertex and the IDs of the graphs which contain that vertex.
These tuples are consumed by Degree, which emits tuples that
contain a vertex’s degree and the IDs of the graphs that contain

Fig. 4. The G* User Interface

that vertex. Note that each vertex ID in the output may appear
more than once, since it will be emitted for each version of
that vertex. The output tuples of Degree are then consumed
by Count & Sum, which emits tuples that contain the total
number of vertices in a graph, the total number of edges in that
graph, and that graph’s ID. At this point, the Union operator
receives tuples generated by Count & Sum on every server,
and emits those tuples as a single stream. These tuples are then
consumed by the Average operator, which performs division
and emits the resulting average vertex degree for each graph
as its output. At no point were computations for any vertex or
edge repeated. Details of our graph processing operators and
programming primitives for easy implementation of custom
operators are presented in our earlier work [13].

III. DEMONSTRATION DETAILS

We will exhibit G*’s unique abilities through interactive
demonstrations that analyze large, real-world data sets. Con-
ference attendees will run queries through our user interface
which also provides succinct visualizations of the system
performance and resulting data.

A. System Setup

We will run G* on our 72-core cluster located at the
University at Albany, State University of New York. In this
cluster, each of nine servers has two Quad-Core Xeon E5430
2.67 GHz CPUs, 16GB RAM, and 2TB of hard drive space.
If we cannot connect to our server cluster, we will use several
laptops preconfigured as a backup cluster.
Data. As Figure 4 shows (further details in Section III-B),
demonstration attendees will be able to query various collec-
tions of large graphs that contain up to billions of vertices
and edges. We constructed these graphs using Twitter mes-
sages [10], network traffic records between Yahoo! servers
and the rest of the world [11], citation and coauthorship
networks [12], and a binary tree generator. Each collection of
graphs represents the dynamics of a network in a different way
(e.g., hourly snapshots vs. daily snapshots, cumulative graphs

1 -- Q1. average vertex degree

2 graph.id, (degree)

3 (graph.id, degree(vertex) degree

4 graph('*').vertex)
5 graph.id

6
7 -- Q2. geodesic distance distribution

8 graph.id, min_dist, (*)

9 min_dist(graph('*'), '1')
10 graph.id, min_dist

Fig. 5. Example Queries

Fig. 6. G* System Viewer

that share vertices and edges with their previous graphs vs.
noncumulative graphs).
Queries. G* has its own query language, the Declarative
Graph Query Language (DGQL), which is modelled after SQL
with appropriate extensions for conveniently handling graph
data [13]. To help users write queries in this language, we
will supply a palette of queries from which they can select
and modify a query. Figure 5 shows two example queries
which compute, for each graph in a collection, the average
vertex degree (Q1) and the distribution of geodesic distances to
vertices from vertex ’1’ (Q2).1 Other queries include those that
find clustering coefficients [1], triadic closure [2], the centrality
of vertices [3], and the size of connected components [1].

B. Demonstration Interface
Conference attendees will interact with G* using the user

interface shown in Figures 4, 6, and 7.
The Data Explorer (Figure 4) provides the ability to select

a data set configuration among several (a). Details for these
configurations are displayed in the properties panel (b) as they
are selected. Attendees will have the opportunity to experiment
with many queries that they can select, modify, and execute
(c). Real-time results will be shown in their own panel (d).
The query (c) and results (d) panels are also present in the
System Viewer and Query History Viewer but are left out of
Figures 6 and 7 for brevity.

1
degree() on line 3 computes the degree of each vertex. On line 9,

min_dist() produces a stream of tuples that contain the ID of a vertex
and the geodesic distance from vertex ’1’ to that vertex as the min_dist

attribute value.

Fig. 7. G* Query History Viewer

The System Viewer (Figure 6) lets conference attendees
monitor the parallel execution of graph queries. In this exam-
ple, G* is executing a minimum distance query on multiple
servers in parallel. Server 1 is collecting aggregate data from
other servers via its Union operator. The numeric values
displayed under each operator represent the number of tuples
that the operator has processed. These values are updated in
real-time as execution proceeds. At the same time, attendees
can watch each server’s resource usage in the graph at the
bottom.

The Query History Viewer (Figure 7) summarizes the use
of G* throughout the demonstration. Real-time updates of
queries executed (a) and data sets processed (b) appear in their
respective panels while an overall summary (c) is continuously
updated.

As illustrated in Figures 4 and 6, our demonstration will
allow attendees to have considerable control over G*, its
data, and the queries executed upon the data, as well as the
ability to watch over the execution in real-time to see G*’s
benefits of shared storage and computations. Using the Query
History Viewer (Figure 7), attendees will also note how G*
has performed across different configurations.

C. Demonstration Scenarios

We will provide demonstrations that illustrate G*’s advan-
tages over traditional database systems and graph processing
systems. Other demonstrations will highlight the effectiveness
of shared storage and computation, as well as G*’s scalability.
Comparison to PostgreSQL. We will demonstrate that re-
lational database systems are neither convenient nor perform
well when they process large graphs. We will show how com-
mon graph queries like those that compute vertex degrees or
clustering coefficients can be simply expressed in G*’s DGQL
but not as simply in SQL. In this demonstration, G* will
also outperform PostgreSQL in executing these queries since
G* can share computations across graphs while PostgreSQL
cannot.
Comparison to Pregel-like Systems. In this demonstration,
we will compare the performance of G* and Giraph [5], an
open-source version of Google’s Pregel [4] by solving the

single-source shortest path (SSSP) problem on a series of 10
cumulative graphs, each containing 10,000 more edges than
its previous one. We will show that G* is substantially faster
than Pregel-like systems due to its unique benefit of sharing
computations across graphs. We will also show that G* users
need to write only a concise DGQL query (Figures 4 and 5)
while Pregel-like systems, in stark contrast, require their users
to write a lengthy program using a conventional programming
language.
Benefits of Shared Storage and Computation. To highlight
the benefits of shared storage, we will have our data sets
available in both shared and isolated storage configurations,
which exploit or ignore commonalities among graphs, re-
spectively. A simple size comparison will demonstrate the
efficacy of shared (i.e., de-duplicated) storage over isolated
(i.e., redundant) storage. By selecting one or the other of these
data sets and executing a query, attendees will experience the
difference in processing speed due to the difference in I/O
overhead related to data size, thus discovering another benefit
of shared storage. Furthermore, attendees will run queries on
the shared storage data set in either shared processing or
isolated processing modes. In this way, we will demonstrate
the benefit of shared computation.
Scalability. Attendees will investigate G*’s ability to scale
by running the same query on multiple configurations in
which a different number of servers store identical graph data
(Figure 4). A few runs of the same query on the same data,
but each on a different number of servers, will allow attendees
to discover a scaling trend using the Query History Viewer
(Figure 7).

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under CAREER Award IIS-1149372 and
by the KISTI Supercomputing Center.

REFERENCES

[1] G. Kossinets and D. J. Watts, “Empirical Analysis of an Evolving Social
Network,” Science, vol. 311, no. 5757, pp. 88–90, 2006.

[2] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Microscopic
Evolution of Social Networks,” in KDD, 2008, pp. 462–470.

[3] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On Querying Historical
Evolving Graph Sequences,” PVLDB, vol. 4, no. 11, pp. 726–737, 2011.

[4] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A System for Large-Scale Graph Processing,”
in SIGMOD. ACM, 2010, pp. 135–146.

[5] Apache Giraph, http://giraph.apache.org/.
[6] Trinity, http://research.microsoft.com/en-us/projects/trinity/.
[7] Neo4j the graph database, http://neo4j.org/.
[8] PostgreSQL, http://www.postgresql.org/.
[9] P. Zhao and J. Han, “On graph query optimization in large networks,”

PVLDB, vol. 3, no. 1, pp. 340–351, 2010.
[10] Twitter Streaming API, https://dev.twitter.com/docs/streaming-

api/methods.
[11] Yahoo! Network Flows Data, http://webscope.sandbox.yahoo.com/

catalog.php?datatype=g.
[12] Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data/.
[13] J.-H. Hwang, J. Birnbaum, A. Labouseur, P. W. O. Jr., S. R. Spillane,

J. Vijayan, and W.-S. Han, “G*: A System for Efficiently Managing
Large Graphs,” CS Department, University at Albany – SUNY, Tech.
Rep. SUNYA-CS-12-04, 2012.

