
Alan G. Labouseur
School of Computer Science

and Mathematics
Marist College

Poughkeepsie, NY 12601
Alan.Labouseur@Marist.edu

Justin Svegliato
School of Computer Science

and Mathematics
Marist College

Poughkeepsie, NY 12601
Justin.Svegliato1@Marist.edu

Jeong-Hyon Hwang
Dept. of Computer Science

University at Albany
State University of New York

Albany, NY 12222
jhh@cs.albany.edu

Distributed Graph Snapshot Placement
and Query Performance

in a Data Center Environment

MARIST MARIST

mailto:alan.Labouseur@marist.edu
mailto:justin.Svegliato1@marist.edu
mailto:jhh@cs.albany.edu

draft 1.3 2Labouseur, Svegliato, and Hwang

IoT	is	always	Growing	
• more	sources	and	sensors	
• more	products	and	services	
• more	messages	
• more	transactions	

IoT	is	always	Changing	
• adding,	removing,	and	
modifying	connections	

In	other	words	.	.	.	
IoT	is	always	Evolving	

Q:	 How	do	we	gain	insight		
from	evolving	networks?

Daily Deluge of Data

3

Dynamic Graphs

Labouseur, Svegliato, and Hwang

A:		We	gain	insight	from	evolving	networks	by	treating	them	like		
	 	 Dynamic	Graphs	where	vertices	(dots)	model	entities	and	
	 	 edges	(lines)	model	relationships	between	entities.	

The	evolution	of	a	network	can	be	modeled	as	a	series	of	graph	
snapshots	that	represent	that	network	at	different	points	in	time.

G1

a
c

b
d

G2 e
c

d

a

b
f

c
e

d

a

b

G3

snapshot snapshotsnapshot

!me	passes !me	passes

draft 1.3

4

G* Overview

Labouseur, Svegliato, and Hwang

G*	is	our	dynamic	graph	
database	system.	
• graph	snapshot	distribution	
• multi-core	scale	up		
• multi-server	scale	out	
• deduplicated	storage	for	large	graphs	
• in-memory	compact	indexing	
• shared	computation	
• sophisticated	parallel	graph	queries	
• integration	with	Relational	databases	
and	other	stores	

• a	convenient	easy-to-use	GUI	
• a	distribution	dashboard	for	analysis

draft 1.3

5

G* Details: Distributed Architecture

Labouseur, Svegliato, and Hwang

Query
Parser

Query
Optimizer

Query
Coordinator

query
network

execution
plan

G* master

query

Communication Layer

Graph Manager
Memory Buffer

Disk

Index

Query Execution Engine

HA

Communication Layer

network

......
Graph Manager

Memory Buffer

Disk

Index

Query Execution Engine

HA

Communication Layer

α β

control

data controldata control

(Justin)

draft 1.3

6

G* Details: Deduplicated Snapshot Storage

Labouseur, Svegliato, and Hwang

c

b
d

G2 G3
c
e

G1

d
f

c
e

d

c
a

b

a

b

a

b
d

G1!G2!G3

a
c

b

G1!G2!G3 G1-G2-G3

d
f

c
e

(G2!G3)-G1 G3-G1-G2

!" #

d

(G1!G2)-G3

commonality-based	deduplication

draft 1.3

7

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

	

{G1	,	G2}

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

	

{G1	,	G2}

8

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

	

{G1	,	G2}

9

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

10

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

11

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

12

G* Details: Distributed Query Processing

Labouseur, Svegliato, and Hwang

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c, !,{G1}), (d, !,{G1,G2}), (c, !,{G2}), (e, !,{G2})(a,!,{G1,G2}) (b, !,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

d

{G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}),

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

!" #

query: average degree variation

Average Degree Query (BSP)
operator vertex@* = VertexOperator([], [α,β,γ]);
operator degree@* = ProjectionOperator([vertex@local],
 [id, graph.id, cardinality(outgoing_edges)+cardinality(incoming_edges)],
 [id, graph.id, degree]);
operator partial@* = AggregateOperator([degree@local], [count, sum], [*, degree], [count, sum], [graph.id]);
operator union@α = UnionOperator([partial@*]);
operator total@α = AggregateOperator([union@α], [sum, sum], [count, sum], [count, sum], [graph.id]);
operator avg@α = ProjectionOperator([total@local], [graph.id, 1.0*sum/count], [graph.id, avg]);

draft 1.3

13

Dynamic Graph Analytics

Labouseur, Svegliato, and Hwang

Using	distributed	queries,	we	can	analyze	network	evolution	to	
discover	trends	and	insights	crucial	to	many	Lields	within	the	
Internet	of	Things:		

• networks	of	electronic	health	records	
• geolocation	trackers	
• diagnostic	data	from	connected	devices	(e.g.,	smart	watches)	
• and	more…

G1

a
c

b
d

G2 e
c

d

a

b
f

c
e

d

a

b

G3

!me	passes !me	passes

draft 1.3

14

Wait. Isn’t this already solved?

Labouseur, Svegliato, and Hwang

So	far	.	.	.	
• Accelerating	queries	by	
distributing	static	data	over	
multiple	workers	has	been	
well	explored.	

However	.	.	.		
• Accelerating	queries	by	
distributing	continuously	
generated	data	presents	
new	challenges.

• Techniques	for	partitioning	
individual	graphs	to	
facilitate	parallel	computation	
have	been	developed.	

• Techniques	for	partitioning	
series	of	graphs	(snapshots)	to	
facilitate	parallel	computation	
raise	new	challenges.	
‣ cannot	consider	only	one	
graph	at	a	time	

‣ cannot	distribute	every	
snapshot	to	all	workers

So	there’s	a	problem.

draft 1.3

15

The Problem

Labouseur, Svegliato, and Hwang

The	snapshot	distribution	problem:		
How	do	we	distribute	snapshots	of	a	continuously	evolving	
network	among	our	available	workers	in	a	way	that’s	ef:icient,	
scalable,	and	optimized	to	process	various	types	of	queries?	

Formally:		

draft 1.3

16

Queries

Labouseur, Svegliato, and Hwang

PageRank	
requires	many	vertices	to	be	
examined	to	compute	the	value	
for	each	vertex.

Average	Degree	
requires	only	one	vertex	to	be	
examined	to	compute	the	value	
for	each	vertex.

n. . .
α β γ

. . .
. . .

. . .
. . .

n. . .
α β γ

. . .
. . .

. . .
. . .

draft 1.3

17

Distributions

Labouseur, Svegliato, and Hwang

Shared	Nothing		
stores	all	of	the	vertices	
comprising	each	snapshot	on	
one	of	the	n	workers.	Snapshot	
G2	is	stored	entirely	on	worker	β.

n. . .

1-1

. . .
. . .

. . .
. . .

1-2

1-n

2-1

2-2

3-1

3-2

2-n 3-n

m-1

m-2

m-n

α β γ

n. . .

1-1

. . .
. . .

. . .
. . .

2-1

m-1

1-2

2-2

1-3

2-3

m-2 m-3

1-m

2-m

m-n

α β γ

Shared	Everything		
stores	the	vertices	comprising	
each	snapshot	such	that	they	are	
shared	among	all	of	the	n	
workers.	Snapshot	G2	is	shared	
across	all	workers.

draft 1.3

18

Data Center Environment

Labouseur, Svegliato, and Hwang

IBM	PureFlex	hardware	
• three	2.9	GHZ	Intel	Xeon	E5-2690	CPUs	of	
8	cores	each	(for	24	cores	total)	

• 131GB	RAM	
• dedicated	20TB	storage	area	network	

Software	
• Ubuntu	14.04.2	LTS	(GNU/Linux 3.13.0-57-generic x86 64)	
virtual	machines	on	each	of	our	three	blades	conLigured	with	
access	to	all	8	cores	and	a	70GB	SAN	partition	

• OpenJDK	Runtime	Environment	(IcedTea	2.5.5).	
• G*	Database	installed	on	one	master	and	23	workers,	each	
taskset	to	a	single	core

draft 1.3

We	computed	the	relative	speedup	for		
• PageRank	and	Average	Degree	queries		
• on	one	snapshot	and	all	snapshots	(23	evolutionary	graphs)		
• placed	in	Shared	Nothing	and	Shared	Everything	distributions		
• with	vertex	counts	of	1K,	2K,	4K,	and	8K	

19

Experiments

Labouseur, Svegliato, and Hwangdraft 1.3

20

Relative Speedup

Labouseur, Svegliato, and Hwang

Relative	speedup	is	the	average	query	execution	time	for	a	given	
query	in	Shared	Everything	placement	(τse)	divided	by	the	average	
query	execution	time	for	Shared	Nothing	placement	(τsn).	

Speedup	=	τse	÷	τsn	

Both	PageRank	and	Average	Degree	queries	were	executed	Live	
times	and	the	resulting	execution	times	averaged.

draft 1.3

21

Results: PageRank on all snapshots

Labouseur, Svegliato, and Hwang

Note	the	increasing	
speedup	of	Shared	
Nothing	over	Shared	
Everything	for	
PageRank	queries	on	
all	snapshots.		

Speedup	grows	as	
data	set	grows.		

Shows		
• beneLit	of	
parallelism	vs.	
overhead	of	
communication	

• importance	of	
snapshot	
placement

Remember:	PageRank	queries	involve	
signiLicant	communication	among	vertices.

Common	case:		
Analysis	of	changing	inLluence	as	networks	evolve.

draft 1.3

22

Results: Average Degree on all snapshots

Labouseur, Svegliato, and Hwang

Note	the	
consistency		in	
Shared	Nothing	and	
Shared	Everything	
for	Average	Degree	
queries	on	all	
shapshots.		

Speedup	is	
unchanged	as	data	
set	grows.		

Shows		
• beneLits	of	
“embarrassing”	
parallelism	(no	
communication	
overhead)	

• snapshot	
placement	does	
not	matterRemember:	Average	Degree	queries	involve	

no	communication	among	vertices.

Common	case:		
Analysis	of	changing	popularity	as	networks	evolve.

draft 1.3

23

Results: PageRank on one snapshot

Labouseur, Svegliato, and Hwang

Note	the	decreasing	
speedup	of	Shared	
Nothing	over	Shared	
Everything	for	
PageRank	queries	on	
one	snapshot.		

Speedup	shrinks	as	
data	set	grows.	

Shows		
• as	the	data	set	
grows,	the	beneLit	
of	parallelism	
decreases	due	to	
increasing	
communication	
overhead

Remember:	PageRank	queries	involve	
signiLicant	communication	among	vertices.

draft 1.3

24

Results: Average Degree on one snapshot

Labouseur, Svegliato, and Hwang

Note	the	decreasing		
speedup	of	Shared	
Nothing	over	Shared	
Everything	for	
Average	Degree	
queries	on	one	
shapshot.		

Speedup	shrinks	as	
data	set	grows.		

Shows		
• impact	of	
communication	
overhead	on	
parallelism	

• importance	of	
snapshot	
placement

Remember:	Average	Degree	queries	involve	
no	communication	among	vertices.

draft 1.3

25

Conclusions So Far

Labouseur, Svegliato, and Hwang

Even	in	a	data	center	environment	(with	fast,	shared	resources),	
there	are	signiMicant	beneMits	of	careful	snapshot	placement	in	
the	most	common	and	important	cases.	
• When	multiple	snapshots	are	queried	together	and	those	
queries	involve	signiLicant	communication	(i.e.,	PageRank	on	all	
snapshots)	it	is	advantageous	to	store	each	snapshot	on	fewer	
servers.	

• But…	it	is	important	that	the	overall	queried	data	be	balanced	
over	all	servers	to	avoid	hurting	the	performance	of	queries	that	
do	not	involve	signiLicant	communication	among	workers	(i.e.,	
Average	Degree	on	one	snapshot).

draft 1.3

26

Next Steps

Labouseur, Svegliato, and Hwang

Our	work	continues.	We’re	.	.	.	
• experimenting	with	larger	and	different	data	sets	

‣ long-tail	Barabasi-Albert	graphs	
‣ social	graphs	generated	by	the	Linked	Data	Benchmark	
Council	benchmarking	tool	

• increasing	the	resolution	of	our	execution	time	measurements	to	
record	data	at	the	BSP	superstep	level.		

• comparing	our	data	center	results	with	those	obtained	from	
experimenting	on	the	64-core	server	cluster	we	used	in	our	
prior	work		
‣ This	may	suggest	insight	into	graph	query	performance	on	
clusters	of	connected	computers	with	no	shared	resources	as	
compared	to	data	center	environments	with	many	shared	
resources.		

draft 1.3

27

Thank you. Questions?

Alan G. Labouseur
School of Computer Science

and Mathematics
Marist College

Poughkeepsie, NY 12601
Alan.Labouseur@Marist.edu

Justin Svegliato
School of Computer Science

and Mathematics
Marist College

Poughkeepsie, NY 12601
Justin.Svegliato1@Marist.edu

Jeong-Hyon Hwang
Dept. of Computer Science

University at Albany
State University of New York

Albany, NY 12222
jhh@cs.albany.edu

Distributed Graph Snapshot Placement
and Query Performance

in a Data Center Environment

draft 1.3

mailto:alan.Labouseur@marist.edu
mailto:justin.Svegliato1@marist.edu
mailto:jhh@cs.albany.edu

