
Efficient Top-k Closeness Centrality Search ∗

Paul W. Olsen Jr. #1, Alan G. Labouseur #2, Jeong-Hyon Hwang #3

Department of Computer Science, University at Albany – State University of New York
1400 Washington Avenue, Albany, NY 12222, USA

1
polsen@cs.albany.edu

2
alan@cs.albany.edu

3
jhh@cs.albany.edu

Abstract—Many of today’s applications can benefit from the

discovery of the most central entities in real-world networks.

This paper presents a new technique that efficiently finds the

k most central entities in terms of closeness centrality. Instead

of computing the centrality of each entity independently, our

technique shares intermediate results between centrality com-

putations. Since the cost of each centrality computation may

vary substantially depending on the choice of the previous

computation, our technique schedules centrality computations in

a manner that minimizes the estimated completion time. This

technique also updates, with negligible overhead, an upper bound

on the centrality of every entity. Using this information, our

technique proactively skips entities that cannot belong to the final

result. This paper presents evaluation results for actual networks

to demonstrate the benefits of our technique.

I. INTRODUCTION

Consider a person planning to open a store. She would pre-
fer a location closest, on average, to a large number of potential
customers [1]. In the case of viral marketing, it is crucial to
find a small number of people who can trigger the largest and
fastest product adoption through social contact advertising [2].
In sociopolitical science and health care, researchers strive to
understand opinion formation and disease propagation with a
focus on the most influential and central people [3]. Other
applications that benefit from the discovery of highly central
entities in real-world networks include national security, power
grid administration, policy making, and computer network
management.

Each of the above networks can be represented as a graph
G with a set V of vertices that represent entities and another
set E of edges that represent relationships between entities.
In this paper, we study the problem of finding, given a graph
G(V,E) and a positive integer k, the k most central vertices
in G. We focus on one popular centrality metric, closeness
centrality [4], [5], [6]. In terms of this metric, a vertex is
highly central if it has paths to a large number of other vertices
and the average shortest path length to these vertices is small
(Section II). In a graph representing a road network, a vertex
with the highest closeness centrality corresponds to a location
closest, on average, to all other locations. In the context of viral
marketing, such a vertex represents a person who, with the
smallest number of intermediaries on average, can influence
the greatest number of people. As we discuss in Section VII,
other types of centrality can be efficiently computed (e.g.,
degree centrality, PageRank) or have unique limitations and
∗ This work is supported by NSF CAREER award IIS-1149372.

complexities (e.g., eccentricity, betweenness). We leave the
extension of our work to the latter as future research.

To find the k vertices with the highest closeness centrality
values, one may consider constructing a distance matrix that
stores the shortest distance for all pairs of vertices [7], [8]
and then using that matrix to calculate the centrality of each
vertex. This approach requires ⌦(�V �2) space and is thus
impractical for large graphs (e.g., several terabytes of memory
for a graph with 1 million vertices). A more practical approach
is to compute the centrality of each vertex using a single-
source shortest path algorithm [9], thereby obviating the need
for constructing a distance matrix. Given a directed graph
with nonnegative edge weights, this approach can complete
in O(�V � ⋅ �E�+ �V �2 log �V �) time with only O(�V �+ �E�) space
by repeating an implementation of Dijkstra’s algorithm [9]
using a Fibonacci heap [10] for each vertex. There are also
techniques that can reduce centrality computation time at the
expense of accuracy [11], [12], [13]. These approximation
techniques, however, support only undirected graphs [11], [13]
or unweighted graphs [12]. They are also unsuitable when
correct answers are required (e.g., the centrality measure is
used to select the best paper over the last 10 years).

In this paper, we present a new solution to the aforemen-
tioned problem for both directed and undirected graphs with
nonnegative edge weights. In our experiments, our solution
was up to 142 times faster (e.g., 28.6 minutes vs. 67.5 hours)
than the conventional approach which computes the centrality
of every vertex independently. In one case, when the graph
size was increased by a factor of 16, the completion time of
our solution increased only by a factor of 46 (= 16

1.38) while
that of the conventional approach showed a super-quadratic
increase (339 = 16

2.1). Our technique also quickly generates
approximate answers and then gradually refines them until it
produces final, correct results. In most of our experiments,
approximately 73% of vertices in the initial, approximate
answers were correct (i.e., kept in the final results). Our
solution also uses only O(�V � + �E�) space.

A key principle of our approach is to materialize inter-
mediate results while the centrality of a vertex is computed,
and then reuse those results while the centrality of another
vertex is computed. Our technique can apply this type of
sharing to any pair of vertices with an edge between them.
The cost of computing a vertex’s centrality in this way heavily
depends on the choice of the previous vertex. Therefore, our
technique schedules (i.e., determines the order of) centrality
computations striving to minimize the overall completion time.

To enable this optimization, our technique estimates, with low
overhead, the centrality computation cost for each possible
sharing scenario. This method can also estimate the centrality
of each vertex, which enables early production of approximate
top-k answers. Finally, our technique efficiently maintains
an upper bound on the centrality of every vertex while the
centrality values of other vertices are computed. Based on these
bounds, it can proactively skip vertices that cannot belong to
the final top-k result, thereby further improving performance.

In this paper, we make the following contributions:

● We develop a technique that efficiently shares inter-
mediate results across centrality computations.

● We present a method for scheduling centrality com-
putations in a manner that minimizes the estimated
completion time.

● We provide an efficient technique for skipping vertices
that cannot be among the k most central vertices.

● We describe a method for quickly producing and
refining approximate top-k answers.

● We experimentally demonstrate the benefits of the
above features using real-world networks.

The rest of this paper is organized as follows: Section II
provides a formal definition of the problem mentioned above.
Section III describes our approach for sharing intermediate
results across centrality computations. Sections IV and V
present our solutions for skipping unnecessary centrality com-
putations and scheduling centrality computations, respectively.
Section VI shows our evaluation results and Section VII
summarizes related work. Section VIII concludes this paper.

II. PROBLEM STATEMENT

In this paper, we study the problem of finding the k most
central vertices in a graph G(V,E) where V and E denote the
set of vertices and edges, respectively. To deal with various
real-world networks, we consider both directed graphs (e.g.,
citation networks) and undirected graphs (e.g., coauthorship
networks) with arbitrary nonnegative edge weights. Hereafter,
we focus on directed graphs since any undirected graph can be
converted into a directed graph by replacing each undirected
edge {x, y} of weight w with two directed edges (x, y) and(y, x), each of weight w.

The closeness centrality of a vertex represents how close
the vertex is, on average, to other vertices [4], [5], [6]. If graph
G is strongly connected, the closeness centrality of a vertex v,
denoted by c(v), is defined as

c(v) = �V � − 1

∑
v

′∈V d(v, v′) (1)

where d(v, v′) denotes the geodesic (i.e., shortest) distance
from vertex v to v′ (Table I). Practical graphs, however,
including those examined in Section VI, may not be strongly
connected. Therefore, we use a more general definition of
closeness centrality [14], [15]:

Symbol Description
V set of vertices
E set of edgesVv set of vertices reachable from vEv set of edges reachable from v

w(v, v′) minimum weight of the edges from vertex v to vertex
v

′ (∞ if no such edge exists)
d(v, v′) geodesic distance from vertex v to vertex v

′ (∞ if
there is no path from v to v

′)
c(v) closeness centrality of vertex v (Definition 1)Vv p {v} ∪ {v′ ∈ Vv ∶ d(v, v′) < w(v, p) + d(p, v′)}Ev p set of edges that emanate from a vertex in Vv p

TABLE I. SUMMARY OF NOTATION

Definition 1: (Closeness Centrality) The closeness cen-
trality of vertex v is defined as:

c(v) = (�V
v

� − 1)2
(�V � − 1)∑

v

′∈Vv
d(v, v′) (2)

where V
v

denotes the set of vertices reachable from v and
d(v, v′) denotes the geodesic distance from vertex v to v′
(Table I).

Note that Equation (2) assigns a high centrality value to
vertex v if v has a large number of reachable vertices and
their geodesic distances from v are short. When G is strongly
connected, Equation (2) reduces to Equation (1) since V

v

= V
for any v ∈ V .

In this paper, we consider the problem of finding a set of
vertices whose centrality values are larger than or equal to the
k-th highest centrality value. This set may contain more than
k vertices if some of these vertices have identical centrality
values. For example, if the centrality values of a, b, and c are
1, 0.9, and 0.9, respectively, and no other vertex has a higher
centrality value, then our answer to a top-2 centrality problem
is {a, b, c} rather than {a, b} or {a, c}. Such a top-k centrality
problem can be formally defined as follows:

Definition 2: (Top-k Closeness Centrality Problem) Given
graph G(V,E), a top-k centrality problem is to find:

argmax

V

′⊆V, �V ′�≥k(min

v∈V ′ c(v), �V ′�).
where the max function assumes a lexicographic order > such
that (a, b) > (c, d) if and only if (a > c) ∨ ((a = c) ∧ (b > d)).

In this paper, our goal is to develop solutions for quickly
answering the top-k centrality problem. The key questions
that we answer in Sections III, IV and V, respectively, are
as follows:

● Is it possible to share results between centrality com-
putations to reduce the overall completion time?

● Is it possible to find vertices that cannot be included
in the final top-k result without computing their actual
centrality values?

● In what order should we compute the centrality of
vertices so that overall completion time is minimized?

b

gf

h

vertex level
b 0
f 1
g 1
h 2

level -1

(1) (2)

(3)
(4)

e

a

s = 4 (= 0+1+1+2)

vertex-level map L

Fig. 1. PFS starts at b. Following
edges in the specified order, it
finds d(b, v′) for each v′ ∈ Vb.

b

g

e

f

h

vertex level

a -1

b 0

f 1

g 1

h 2

level 0

level 1

level 2

(1)

level -1 vertex-level map L

s = 8 (= 4 + 4!1)

a

(a) placing a at level -1 (e’s level un-
known)

b e

a

f

h

vertex level

a -1

b 0

f 1

g 0

h 2

(2)

g
level 0

level 1

level 2

level -1 vertex-level map L

s = 7 (= 8 - 1)

(b) promoting g to level 0 (e’s level
unknown)

b g e

a

f

h

(3)

(4)

level 0

level 1

level 2

level -1

vertex level

a -1

b 0

e 0

f 1

g 0

h 2

vertex-level map L

s = 8 (= 7 + 1)

(c) placing e at level 0

Fig. 2. �-PFS starts at vertex a. Placing vertex a at level -1 and then following only the four edges labeled (1) through
(4), it ensures that each vertex v′ ∈ Va is at level d(a, v′)-1.

III. SHARING ACROSS CENTRALITY COMPUTATIONS

This section describes our technique for efficiently com-
puting the centrality of each vertex by reusing intermediate
results. Sections III-A and III-B discuss basic principles and
algorithmic details of this technique, respectively.

A. Core Ideas

The closeness centrality of vertex v requires V
v

and
d(v, v′) for every v′ ∈ V

v

(Definition 1). This requirement
can be met by Priority-First Search (PFS) algorithms which
visit vertices in order of increasing geodesic distance from
v (e.g., Dijkstra’s [9] for weighted graphs and BFS [8] for
unweighted graphs). Figure 1 shows an example that computes
the closeness centrality of vertex b by starting a PFS at b.
In this example, the weight of each edge is set to 1 to ease
illustration. This PFS follows edges in the order of (1) – (4)
finding that V

b

= {b, f, g, h}, d(b, b) = 0, d(b, f) = d(b, g) = 1,
and d(b, h) = 2. Thus, the closeness centrality of b is computed
as c(b) = (�Vb�−1)2(�V �−1)∑v′∈Vb

d(b,v

′) = (4−1)2(6−1)(0+1+1+2) = 9
20 .

Consider starting a new PFS at a in Figure 1 to compute
the centrality of vertex a. This PFS would follow all seven
edges in the figure. It is possible to achieve the same effect
more efficiently by leveraging the previous PFS started at
b. This approach raises the challenge of identifying which
past computations can be effectively reused. Our solution (i)
assumes that the previous PFS placed every vertex v′ ∈ V

b

at level d(b, v′) and then (ii) places each vertex v′ ∈ V
a

at
target level d(a, v′)−w(a, b) while skipping (i.e., not following
the outgoing edges of) vertices already placed at the target
level during the previous search. We call this solution �-PFS
because it performs PFS while skipping calculations done by
the previous search.

Figures 1 and 2 illustrate the core ideas mentioned above
(table L and variable s are explained below). In Figure 1, PFS
places b at level d(b, b) = 0, f at level d(b, f) = 1, g at level
d(b, g) = 1, and h at level d(b, h) = 2. In Figure 2(a), �-PFS
places a at level d(a, a)−w(a, b) = −1. Following a’s outgoing
edge to b, �-PFS finds that the previous search already placed
b at the target level d(a, b) −w(a, b) = 0. In this case, it does
not follow the outgoing edges of b since every vertex v′ (e.g.,
f and h in Figures 1 and 2) having a shortest path from a
via b is already at the target level d(a, v′)−w(a, b). After this
step, �-PFS follows vertex a’s edge to vertex g. In this case,

�-PFS promotes g from level 1 (Figure 2(a)) to target level
d(a, g) −w(a, b) = 0 (Figure 2(b)) and newly places e (which
was not at any level) at level d(a, e)−w(a, b) = 0 (Figure 2(c)).
Next, �-PFS follows g’s outgoing edge to f finding that f is
already at the target level d(a, f)−w(a, b) = 1. As in the case
of examining b, it does not follow any outgoing edges of f . It
then terminates since there are no more edges to follow.

The examples in Figures 1 and 2 also show how our
technique maintains intermediate results to efficiently compute
centrality values. These intermediate results are (i) a map
L which contains each vertex v′ reachable from the source
(i.e., the vertex at which a PFS starts) and the level of v′
(denoted L[v′]) and (ii) a variable s which maintains the sum
of the differences between the level of the source and the level
of every vertex v′ in L. For example, the PFS in Figure 1
inserts b, f, g, h and their levels into L. It also increases s
by these levels since L[v′] − L[b] = L[v′] − 0 = L[v′] for
each v′ ∈ {b, f, g, h}. When �-PFS starts at a (Figure 2(a)),
the source changes from b at level 0 (Figure 1) to a at level−w(a, b) = −1. In this case, for each v′ ∈ {b, f, g, h}, the
difference between the level of the source and the level of v′
increases by 1. Thus, �-PFS increases s by 4 ⋅1. When �-PFS
promotes g from level 1 (Figure 2(a)) to level 0 (Figure 2(b)),
�-PFS decreases s by 1, the promotion distance. When �-PFS
newly visits e and places it at level 0 (Figure 2(c)), (e,0) is
inserted into L and s is increased by d(a, e) = 1 in response
to this new addition.

When �-PFS completes (Figure 2(c)), L has entries for
all of the vertices reachable from a (i.e., �L� = �V

a

�), and
s = ∑(v′,l′)∈L(L[v′]−L[a]) = ∑(v′,l′)∈L((d(a, v′)−w(a, b))−(d(a, a)−w(a, b))) = ∑

v

′∈Va
d(a, v′). Using a variable track-

ing �L�, the centrality of a can be computed with negligible
overhead as (�Va�−1)2(�V �−1)∑v′∈Va

d(a,v

′) = (�L�−1)2(�V �−1)s = (6−1)2(6−1)8 = 5
8 .

A detailed description of �-PFS and a proof of its cor-
rectness are included in Appendices A and B. �-PFS is an
extension to PFS with additional features that use a map L
and a variable s to quickly compute centrality values and skip
calculations done by a previous search. Incremental search
algorithms for dynamic graphs [16] and �-PFS bear similarity
in that they reuse previous results. The former algorithms,
however, are not applicable to searches which start at different
vertices. Furthermore, they do not maintain intermediate results
for fast centrality computation (e.g., L and s of �-PFS). In

Algorithm 1: top centrality(G,k)
input : graph G(V,E), k
output : top-k list A

1 S ← schedule(G,k); // Section V

2 for v : start(S) do // every start vertex v

3 (L, s)← PFS(v);
4 process(v,L, s,A,S, k); // Algorithm 2

5 return A;

Algorithm 2: process(p,L, s,A,S, k)
input : vertex p, vertex-level map L, sum of geodesic

distances s, top-k list A, schedule S , k
1 c(p)← (�L�−1)2(�V �−1)s ; // centrality of p (Definition 1)

2 update(A,p, c(p), k); // update A using p, c(p), and k

3 for each vertex v that follows p in schedule S do

4 (L, s,⇤) =�-PFS(v, p,L, s);
5 process(v,L, s,A,S, k);
6 rollback(L,⇤); // restore state of L as of step 4

Figure 2, �-PFS follows only four edges rather than all seven
edges. Section VI presents our experimental results where �-
PFS achieves the effect of PFS by visiting a much smaller
number (e.g., 0.1% – 20%) of vertices compared to PFS. The
set of vertices visited by a �-PFS which starts at v and reuses
the search started at p, can be expressed as V

v p

= {v} ∪ {v′ ∈V
v

∶ d(v, v′) < w(v, p)+d(p, v′)} (Appendix B). While a PFS
starting at v completes in O(�E

v

� + �V
v

� log �V
v

�) time, a �-
PFS starting at v and reusing a search started at p completes
in O(�E

v p

� + �V
v p

� log �V
v p

�) where V
v

, E
v

, V
v p

and E
v p

are
defined as in Table I (Appendix C).

B. Algorithmic Details

Algorithm 1 shows the overall operation of our technique.
It begins by obtaining a centrality computation schedule S
(line 1). Figure 3(b) shows an example schedule constructed
for the graph in Figure 3(a). In Figure 3(b), vertex f follows
h, suggesting the computation of f ’s centrality using a �-PFS
which reuses a search started at h. Vertices not following any
other vertex are called start vertices (e.g., e and h) and their
centrality values are computed using PFS. Our technique for
constructing such a schedule is presented in Section V.

After obtaining the schedule, Algorithm 1 picks a start
vertex v (line 2) and then starts PFS at v (line 3). The PFS
executed on line 3 corresponds to Dijkstra’s algorithm [9] ex-
cept that it (i) places each vertex v′ ∈ V

v

at level d(v, v′) while
storing v′ and d(v, v′) in L and (ii) initially sets s to 0 and then
increases s by d(v, v′) for every v′ ∈ V

v

, thereby ensuring that
s = ∑

v

′∈Vv
d(v, v′) when PFS completes. This PFS algorithm

is presented in Appendix A. After obtaining L and s as above,
the centrality values of v and its successors in the schedule
are computed recursively (line 4) using Algorithm 2.

Algorithm 2 computes the centrality of vertex p using L
and s (line 1) as explained in Section III-A. Next, it updates
the top-k list A so that A keeps, among the vertices whose
centrality values are computed, those having centrality values
no less than the k-th highest centrality value (Definition 2).
Then, for every vertex v that follows p in the schedule (line

b

gf

h

e

a

(a) Graph

b

gf

h

e

a

(1) PFS

a -3

b -2

e -2

f -1

g -2

h 0

h 0

b -2

f -1

g -1

h 0

(2) !-PFS
g -2

f -1

h 0

e 0

f -1

h 0

start

start
(3) !-PFS

(4) !-PFS

(5) !-PFS

(6) PFS

(b) Schedule

Fig. 3. Overview of Our Approach

3), Algorithm 2 updates L and s using �-PFS and returns them
(line 4) in addition to a map ⇤ (explained below). Finally, it
recursively uses Algorithm 2 to process v and its successors
(line 5). The tables in Figure 3(b) illustrate how L is updated
as the centrality of each vertex is computed in the order (1)
– (6). In the tables for steps (2) – (5), the changed entries in
L are shaded. These entries indicate the vertices that �-PFS
visits. The rest of each table shows the benefit of �-PFS over
PFS (i.e., the vertices that �-PFS skips, but PFS would visit
if it were executed).

Our method uses a separate map ⇤ (lines 4 and 6 in
Algorithm 2) to handle multiple successors. For instance,
vertex f in Figure 3(b) is followed by b and g. The �-PFS
computations for b and g must use the same version of L (see
table (2) in Figure 3(b)) although each of them needs to update
L. Therefore, our technique updates an entry in L only after
saving that entry in ⇤. When we add a new vertex v′ to L, we
add the entry (v′, null) to ⇤. This logging approach allows our
centrality computation method to restore the previous version
of L by rolling back the operations that have changed the levels
of vertices (line 6 in Algorithm 2).

Our technique preserves one instance of ⇤ for every level of
recursion (Algorithm 2). In all of our evaluations, each instance
of ⇤ stores information about a small fraction (e.g., < 5%) of
vertices and the depth of recursion is relatively small (e.g., 30,
given a graph containing 1,000,000 vertices). Our technique
can also be extended to control memory utilization by adding
code, after line 2 in Algorithm 2, that changes the current
vertex p’s successors to start vertices if memory utilization is
higher than a threshold. In this case, because further recursion
is disallowed, no more instances of ⇤ are created. However,
the vertices that became start vertices must be processed using
PFS which is usually slower than �-PFS.

IV. PRUNING

This section presents our technique for proactively skipping
vertices that cannot be included in the final top-k answer. Sec-
tion IV-A provides an overview of this technique. Section IV-B
describes this technique in detail.

A. Core Ideas

Suppose that our solution presented in Section III has
inserted the centrality values of k vertices into top-k list A. Let
✓(A) denote the minimum of the current centrality values in
A. Then, any vertex f whose centrality c(f) is less than ✓(A)

v

f

p

(4)

(7)

(8)

(1) current top-3!

(3)

(6)

v”

(9)

(10)

(11)

|V
p

| = 12

A = {(x, 0.5), (y, 0.5), (z, 0.4)}
✓(A) = 0.4

v’

|V
v

| = 15

�v� � V
v

: d(v, v�
) � 4�

v

��Vv

d(v, v�
) = 34

|V
f

| � 12

|V
f

| � 15

�

v

��Vf

d(v, v�
) � 15 · 1 +

�

v

��Vf

d(f, v�
)

�

v

���Vv�Vf

d(v, v��
) � (15 � 12) · 4

�

v

��Vf

d(v, v�
) � 34 � 12 � 15 = 7

c(f) � (15 � 1)

2

(100 � 1) · 7

< 0.4 = ✓(A)

Fig. 4. Pruning Example (�V � = 100)

p ! v

f

(2) (5)

!!

Fig. 5. Schedule before Skipping f

p ! v

f
(12)

!!

removed

Fig. 6. Schedule after Skipping f

cannot be included in the final top-k answer. It is possible
to proactively skip such a vertex f if an upper bound on
c(f) is found before computing c(f) and if that bound is
less than ✓(A). For this reason, we call ✓(A) the pruning
threshold. A crucial requirement of this pruning approach is the
maintenance of these bounds with low computational overhead.
To effectively skip vertices, these bounds must be close to the
actual centrality values.

Consider the example in Figure 4 where ✓(A) is 0.4 (see
(1) in Figure 4) and an upper bound on c(f) = (�Vf �−1)2(�V �−1)sf

is derived after obtaining an upper bound on �V
f

� and a
lower bound on s

f

= ∑
v

′∈Vf
d(f, v′). In this example, c(p) is

computed (3) according to the schedule in Figure 5 (2) finding
that �V

p

� = 12 (i.e., 12 vertices are reachable from p). At this
point, �V

p

� = 12 can be used as a lower bound on �V
f

� for any
vertex f that has a path to p (4) since V

p

⊆ V
f

(i.e., every vertex
reachable from p is also reachable from f). Next, according to
the schedule (5), c(v) is computed (6) finding that �V

v

� = 15,
d(v, v′) ≤ 4 for every v′ ∈ V

v

and s
v

= ∑
v

′∈Vv
d(v, v′) = 34.

In this case, �V
v

� = 15 can be used as an upper bound on �V
f

�
for any vertex f reachable from v since V

f

⊆ V
v

(7).

Assume that d(v, f) = 1 and �V � = 100. Then, a lower
bound on s

f

= ∑
v

′∈Vf
d(f, v′) can be found as follows: First,

∑
v

′∈Vf
d(v, v′) ≤ ∑

v

′∈Vf
�d(v, f) + d(f, v′)� = ∑

v

′∈Vf
1 +∑

v

′∈Vf
d(f, v′) = �V

f

� ⋅ 1 + s
f

≤ 15 ⋅ 1 + s
f

(8). Since�V
v

− V
f

� = �V
v

� − �V
f

� ≤ 15 − 12 and d(v, v′) ≤ 4 for all
v′ ∈ V

v

(by (6)), ∑
v

′′∈Vv−Vf
d(v, v′′) ≤ (15 − 12) ⋅ 4 = 12 (9).

Then, by (8), s
f

≥ ∑
v

′∈Vf
d(v, v′) − 15 ⋅ 1. Furthermore, since∑

v

′∈Vv
d(v, v′) = ∑

v

′∈Vf
d(v, v′) + ∑

v

′′∈Vv−Vf
d(v, v′′), s

f

≥�∑
v

′∈Vv
d(v, v′) −∑

v

′′∈Vv−Vf
d(v, v′′)� − 15 ⋅ 1 ≥ 34 − 12 − 15

by (9). Therefore, s
f

≥ 7 (10). In this case, c(f) ≤ (15−1)2(100−1)⋅7 <
0.4 = ✓(A) (11) and f can be safely skipped (12).

The above properties can be formally expressed as follows:

Lemma 1: For any vertex f reachable from vertex v,

s
f

= �
v

′∈Vf

d(f, v′) ≥ s
v

− (�V
v

� − �
f

) ⋅ �
v

− d(v, f) ⋅ �
f

where s
v

= ∑
v

′∈Vv
d(v, v′), �

f

and �
f

are lower and upper
bounds on �V

f

�, and �
v

is an upper bound such that �
v

≥
d(v, v′) for all v′ ∈ V

v

.

Proof: For any vertex f reachable from v, V
f

⊆ V
v

and
thus V

v

= V
f

∪ (V
v

− V
f

) and V
f

∩ (V
v

− V
f

) = �. Therefore,

(i) s
v

= �
v

′∈Vv

d(v, v′) = �
v

′∈Vf

d(v, v′) + �
v

′∈Vv−Vf

d(v, v′).
Here,(ii) �

v

′∈Vv−Vf

d(v, v′) ≤ (�V
v

� − �
f

) ⋅ �
v

because d(v, v′) ≤ �
v

for each v′ ∈ V
v

− V
f

and �V
v

− V
f

� =�V
v

� − �V
f

� (due to V
v

⊇ V
f

) ≤ �V
v

� − �
f

. Furthermore,

(iii) �
v

′∈Vf

d(v, v′) ≤ d(v, f) ⋅ �
f

+ s
f

since ∑
v

′∈Vf
d(v, v′) ≤ ∑

v

′∈Vf
�d(v, f) + d(f, v′)� = d(v, f) ⋅�V

f

� +∑
v

′∈Vf
d(f, v′) ≤ d(v, f) ⋅ �

f

+ s
f

. Then,

s
f

≥ �
v

′∈Vf

d(v, v′) − d(v, f) ⋅ �
f

by (iii)
= �s

v

− �
v

′∈Vv−Vf

d(v, v′)� − d(v, f) ⋅ �
f

by (i)
≥ s

v

− (�V
v

� − �
f

) ⋅ �
v

− d(v, f) ⋅ �
f

by (ii).
Theorem 1: For any vertex f ,

c(f) ≤ (�f − 1)2(�V � − 1)�sv − (�Vv � − �f) ⋅ �v − d(v, f) ⋅ �f�
where s

v

, �
v

, �
f

and �
f

are as in Lemma 1.

Proof: c(f) = (�Vf �−1)2(�V �−1)sf
≤ (�f−1)2(�V �−1)sf

≤
(�f−1)2

(�V �−1)�sv−(�Vv �−�f)⋅�v−d(v,f)⋅�f� by Lemma 1.

B. Algorithmic Details

After the centrality values of k vertices are inserted into
top-k list A, our pruning approach can be enabled by running
Algorithm 3 right after line 2 in Algorithm 2. Algorithm 3
uses intermediate results L and s obtained from a search
started at vertex v (Section III), as well as pruning threshold
✓(A), schedule S , and �

v

. To ensure that �
v

≥ d(v, v′) for
each v′ ∈ V

v

, the value of �
v

is determined as follows: If
c(v) was computed using PFS (Algorithm 4 in Appendix A),
�
v

is set to max

v

′∈Vv d(v, v′). If c(v) was computed using
�-PFS which reused a search started at p (Algorithm 5 in
Appendix A), �

v

is assigned the maximum of (i) w(v, p)+ �
p

where �
p

≥ d(p, v′) for v′ ∈ V
p

is from the search started at p
and (ii) max

v

′∈Vv−Vp d(v, v′). In this case, (i) for each v′ ∈ V
p

,
�
v

≥ w(v, p)+�
p

≥ w(v, p)+d(v, p) ≥ d(v, v′) and (ii) for each
v′ ∈ V

v

− V
p

, �
v

≥ d(v, v′).
Our method uses maps � ∶ V → N and � ∶ V → N to store,

for every f ∈ V , upper and lower bounds on �V
f

�, respectively.
Given �L� = �V

v

�, it visits each vertex f such that the value of

Algorithm 3: prune(v,L, s, ✓(A),S, �
v

)
input : vertex v, vertex-level map L, sum of distances s,

threshold ✓(A), schedule S , distance upper bound �v

1 ensure that �[f] ≥ �L� for every f with a path to v;
2 ensure that �[f] ≤ �L� for every f with a path from v;
3 insert (v,0) into priority queue Q (priority: 0);
4 while �Q� > 0 do

5 (f, l)← remove min(Q); // dequeue argmin(v′,l′)∈Q l

′
6 s

′ = s − (�L� − �[f]) ⋅ �v − l ⋅ �[f]; // Lemma 1

7 c

′ ← (�[f]−1)2(m−1)⋅s′ ; // upper bound on c(f): Theorem 1

8 if c

′ − ✓(A) < �[f] then // c

′
decreased or ✓(A) increased

9 �[f]← ✓(A) − c′; // save ✓(A) − c′ for vertex f

10 for each vertex f

′ with an edge from f do

11 insert (f ′, l +w(f, f ′)) into Q;
12 if c

′ < ✓(A) and f has no successors in S then

13 remove f and its incoming edge from S;

�[f] is less than �L� and there is a path from f to v. For each
visited vertex f , �[f] is set to �L� (line 1 in Algorithm 3).
This approach incurs low overhead since it visits a vertex f
only when a tighter bound value for �[f] is available. In an
undirected graph, �[f] is updated only once for every vertex
f because �V

p

� = �V
f

� for every vertex p with a path to and
from f . Next, for every vertex f such that the value of �[f]
is greater than �L� and there is a path from v to f , our method
sets �[f] to �L� (line 2).

After the above steps, our method skips vertices that cannot
be included in the final top-k answer. Since the pruning condi-
tion for vertex f requires d(v, f) (Lemma 1 and Theorem 1),
our method performs a PFS which starts at vertex v (lines
3-13). While visiting each vertex f in order of increasing
geodesic distance from v, it computes a lower bound s′ on
s

f

(line 6) and an upper bound c′ on c(f) (line 7). It then
checks if c′ has decreased or ✓(A) has increased, by comparing
c′ − ✓(A) to �[f] which stores the minimum among the past
values of c′ − ✓(A) (line 8). If so, it sets �[f] to c′ − ✓(A)
(line 9) and inserts into Q vertices whose pruning condition
may hold due to the changes reflected in c′ and ✓(A) (lines 10
and 11). If vertex f cannot be in the final top-k answer (i.e.,
c′ < ✓(A)) and f is not needed for computing the centrality
of any other vertex (i.e., f has no successors in S), then f is
safely skipped (lines 12-13). Our method visits vertex f only
if the difference between the upper bound on c(f) and ✓(A)
decreases. Section VI provides detailed evaluation results on
our method’s effectiveness in skipping centrality computations
with economical use of computation resources.

V. SCHEDULING

This section describes our techniques for determining the
order of centrality computations (Section V-A) and estimating
centrality computation time (Sections V-B and V-C). The
technique mentioned in Section V-B can also estimate the
centrality of vertices.

A. Overview

If there is an edge from a vertex v to a vertex p, the
closeness centrality of v can be obtained from �-PFS which

ˆt
b|g

ˆt
g|f

ˆt
f |h

ˆt
b|f

ˆt
a|b

ˆt
a|g

ˆt
a

ˆt
b

ˆt
f

ˆt
h

ˆt
g

ˆt
e

ˆt
a|e

b

f

h

g

e

a

o

Fig. 7. Initial Schedule

h

e

start

b

f g

a

o

start

PFS

PFS

∆-PFS

∆-PFS

∆-PFS

∆-PFS

Fig. 8. Optimized Schedule

reuses a search started at p (Section III-A). Each solid arrow
in Figure 7 represents such a centrality computation scenario
for the graph in Figure 3(a). In Figure 7, the weight of an edge
is the estimated time to finish the corresponding computation.
For example, the weight ˆt

a b

of the edge from b to a represents
the estimated time to compute the centrality of a using �-PFS
which reuses a search started at b. The centrality of each vertex
v can also be computed using PFS. In Figure 7, this case is
represented as a dotted edge from a virtual vertex o to vertex v
and the edge weight ˆt

v

is set to the estimated time to compute
the centrality of v using PFS.

If all of the possible centrality computation scenarios are
represented as above, a directed minimum spanning tree rooted
at virtual vertex o (Figure 8) has the following properties:
(i) every vertex v in the tree has a path from o, meaning
that the centrality of v can be computed using a series of
PFS and �-PFS operations represented as the edges on the
path from o, and (ii) the sum of edge weights (i.e., the
estimated completion time) is no larger than those of other
spanning trees rooted at o. In other words, this spanning tree
represents a centrality computation schedule which minimizes
the estimated completion time. This tree can be obtained in
O(�E� log �V �) time [17].

B. Approximate Top-k Answers

Our scheduling approach (Section V-A) requires an esti-
mated completion time for every possible scenario of com-
puting a vertex’s centrality. As explained in Section V-C,
these completion times can be estimated if, for each vertex
v, �V

v

� (i.e., the number of vertices reachable from v) and
s

v

= ∑
v

′∈Vv
d(v, v′) are known. In this section, we describe our

technique that estimates �V
v

� and s
v

with low computational
and space overhead. Using the estimates of V

v

and s
v

, this
technique estimates the centrality of every vertex and presents
the k vertices with the highest estimates as an approximate
top-k answer.

Our method for estimating �V
v

� and s
v

for every v extends
an approximate centrality computation algorithm by Kang et.
al [12]. This algorithm uses a fixed-size bitmap ˆV

v,i

, called
an FM-sketch [18], to represent the set of vertices reachable
from v within i hops. First, it initializes, for each vertex v, a
sketch ˆV

v,0 using the ID of v. At iteration i, for every vertex v,
ˆV

v,i

is updated using the bitwise OR operation � with ˆV
v,i−1

and ˆV
p,i−1 for every vertex p with an edge from v. The �

operation supports duplicate-insensitive counting (i.e., has the

property that if count(ˆV1) ≈ �V1� and count(ˆV2) ≈ �V2�, then
count(ˆV1� ˆV1) ≈ �V1 ∪V2� where count(ˆV

i

) is the number of
distinct values estimated from sketch ˆV

i

). The above process
is then repeated until ˆV

v,i

= ˆV
v,i−1 for every vertex v (i.e., all

of the vertices reachable from v are reflected in ˆV
v,i

). Then,�V
v

� and s
v

are estimated as count(ˆV
v

) and ŝ
v

= ∑i

j=1 j ⋅ ˆV
v,j

where ˆV
v

= ˆV
v,i

.

The algorithm by Kang et al. cannot effectively support
weighted graphs. To overcome this limitation with low space
and time costs, our approach merges sketches that are sent to
the same vertex during different iterations. At iteration i, our
approach incorporates, for every edge (p, v), sketch ˆV

v,i

into
ˆV

p,⌧

rather than ˆV
p,i+1, where ⌧ is round

µ

�round
w(p,v)�i +

w(p, v)��, µ = min(p,q)∈E w(p, q) is the minimum edge
weight, and round

µ

(t) is a multiple of µ closest to t. In this
way, ˆV

p,⌧

can approximate a set of vertices whose shortest
distance from p is no longer than ⌧ . A concrete description of
the above method can be found in our technical report [19].

Our approach requires only O(�V � + �E�) memory
space where is the size of each FM-sketch. The reason
for this benefit is that our approach maintains one sketch
for each vertex and up to two sketches for each edge
since round

µ

�round
w(p,v)�i + w(p, v)�� < round

w(p,v)�i +
w(p, v)�+µ < ��i+w(p, v)�+w(p, v)�+µ ≤ i+3 ⋅w(p, v). The
running time of this approach is O(�

µ �E�) where � is the di-
ameter of the graph such that � =max

v∈V (max

v

′∈Vv d(v, v′)).
In many real-world networks, the diameter tends to decrease
as the network size increases [20]. On road networks defined
in a 2-dimensional coordinate space, � in general increases
in proportion to

��V � (Section VI). If � is extremely large
compared to µ, the running time of our approach can also be
reduced at the expense of accuracy by suppressing the variation
of edge weights (e.g., changing each edge weight w(p, v) to
w(p, v)✏ for some ✏ such that 0 ≤ ✏ < 1).

When ˆV
v

and ŝ
v

are obtained as above, the centrality of v

can be estimated as (count(V̂v)−1)2(�V �−1)ŝv
with negligible overhead.

Then, the k vertices with the highest estimated centrality values
can also be found in O(�V � log k) time using a priority queue
of size k. The utility of these vertices as an approximate top-k
answer is experimentally demonstrated in Section VI.

C. Search Cost Estimation

We now discuss how the estimates of �V
v

� and s
v

(Sec-
tion V-B) can be used to estimate the completion times of
PFS and �-PFS.

The running time of PFS which starts at v is O(�E
v

� +�V
v

� log �V
v

�) (Section III-A and Appendix C). Furthermore,
when V

v

contains a relatively large number of vertices, �E
v

�
can be approximated as �E��V � ⋅ �Vv

�. Therefore, given sketch
ˆV

v

such that count(ˆV
v

) ≈ �V
v

� (Section V-B), we define the
estimated PFS time ˆt

v

as count(ˆV
v

) log(count(ˆV
v

)) while
assuming that the unit time is the average amount of time that
PFS would spend per visited vertex. If an unweighted graph is
given, ˆt

v

is defined to be count(ˆV
v

) since PFS can complete
in O(�E

v

� + �V
v

�) (Appendix C).

name type degree meaning of edge from v1 to v2

RI weighted,
undirected

2.1 a road segment with length
w(v1, v2) between locations v1

and v2 in Rhode Island [21]
Web unweighted,

directed
5.8 web page v2 has a hyperlink to

v1 [22]
Wiki unweighted,

directed
2.1 user v2 has edited a Wikipedia

Talk page of user v1 [22]
DBLP unweighted,

undirected
5.3 researchers v1 and v2 have coau-

thored papers [23]

TABLE II. DATA SETS

A �-PFS which starts at v and reuses a search started at
p completes in O(�E

v p

� + �V
v p

� log �V
v p

�) time (Section III-A
and Appendix C). Making assumptions on �E

v p

� as in the case
of ˆt

v

, we set the estimated �-PFS time ˆt
v p

to ��V
v p

� log �V
v p

�
where � denotes the ratio of the time that �-PFS spends
per visited vertex to the time that PFS spends per visited
vertex. In all of our evaluations (Section VI), � was 1.79 or
slightly smaller since �-PFS performs, for each visited vertex
n, additional operations which save the previous location of
n in ⇤ and restore the previous location of n using ⇤ (line
6 in Algorithm 2). Despite this higher overhead per visited
vertex, �-PFS generally outperforms PFS since a vertex v in
a real-world graph is likely to have an adjacent vertex p such
that V

v p

is much smaller than V
v

(Section VI). Furthermore,
our scheduling approach selects PFS when it has a shorter
expected completion time than �-PFS (Section V-A).

To obtain ˆt
v p

as above, our method estimates �V
v p

� (i.e.,
the number of vertices that �-PFS visits) by adding (i) the
estimated number of vertices that �-PFS would newly visit
(e.g., vertex e in Figure 2(c)) and (ii) the estimated number
of vertices that �-PFS would promote (e.g., vertex g in
Figure 2(b)). The former (i.e., �V

v

� - �V
p

�) can be approximated
as count(ˆV

v

) − count(ˆV
p

). The latter is approximated as

0.82

�̂

0.96
v p ⋅ count(V̂p) 0.23

(w(v,p))0.83 ⋅ ŝ

0.16
p

where �̂
v p

is the estimated sum of
promotion distances. This formula is obtained through linear
regression that identified the relationship among the above
variables based on actual �-PFS executions (Section VI).
We define �̂

v p

as w(v, p) ⋅ count(ˆV
p

) + ŝ
p

− count(V̂p)
count(V̂v) ŝv

for the following reasons: (i) For every promoted vertex v′,
v′ ∈ V

p

. (ii) For every promoted vertex v′, the promotion
distance is w(v, p) + d(p, v′) − d(v, v′). (iii) �-PFS skips
every vertex v′ ∈ V such that w(v, p) + d(p, v′) − d(v, v′) =
0. (iv) By (i), (ii) and (iii), the sum of the promotion
distances can be expressed as ∑

v

′∈Vp
�w(v, p) + d(p, v′) −

d(v, v′)� = ∑
v

′∈Vp
w(v, p)+∑

v

′∈Vp
d(p, v′)−∑

v

′∈Vp
d(v, v′) =

w(v, p)�V
p

� + s
p

− ∑
v

′∈Vp
d(v, v′). (v) If V

p

contains a rel-
atively large number of vertices from V

v

, ∑
v

′∈Vp
d(v, v′) ≈�Vp��Vv � ∑v

′∈Vv
d(v, v′) = �Vp��Vv �sv

.

VI. EVALUATION

This section presents experimental results obtained by
running three methods for finding the k most central vertices
in a graph. One method, called PFS, computes the centrality
of each vertex using an implementation of Dijkstra’s algo-
rithm [9] with a Fibonacci heap [10]. To the best of our knowl-

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

pe
rc

en
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(a) RI

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

pe
rc

en
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(b) Web

63 125 250 500 1000
0

20

40

60

80

100

graph size (unit: 1000 vertices)

pe
rc

en
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(c) Wiki

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

pe
rc

en
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(d) DBLP

Fig. 9. Mean % of Reachable Vertices and Savings by �-PFS (k = 10)

25 50 100 200 400
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(a) RI

0 0.1 1.5 18.5 87.5
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(b) Web

0.1 0.2 0.9 1.7 3.4
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)
co

m
pl

et
io

n
tim

e
(h

ou
r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(c) Wiki

2.7 5.5 28.1 90.5 241.9
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(d) DBLP

Fig. 10. Benefits of �-PFS, Pruning, and Scheduling (k = 10)

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
ee

du
p

(c
om

pa
re

d
to

 P
F

S
)

∆−PFS
∆−PFS (Pruning)

(a) RI

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
ee

du
p

(c
om

pa
re

d
to

 P
F

S
)

∆−PFS
∆−PFS (Pruning)

(b) Web

63 125 250 500 1000
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
ee

du
p

(c
om

pa
re

d
to

 P
F

S
)

∆−PFS
∆−PFS (Pruning)

(c) Wiki

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)
sp

ee
du

p
(c

om
pa

re
d

to
 P

F
S

)

∆−PFS
∆−PFS (Pruning)

(d) DBLP

Fig. 11. Speedup

edge, PFS is the fastest method in the literature for finding
the k most central vertices (Section VII). Another method,
referred to as �-PFS, performs centrality computations as
described in Sections III and V. This method can also be
used with the pruning technique described in Section IV. We
call this combination �-PFS (Pruning). These methods were
evaluated using the data sets summarized in Table II. From
each data set, we derived a series of five graphs. Each graph in
a series contained twice as many vertices as the previous graph.
For example, the smallest and largest graphs from the Wiki

data set consisted of 62,500 vertices and 1,000,000 vertices,
respectively (Figure 9(c)). When graphs were larger than the
above (e.g., 2 million vertices), PFS did not complete within
a week. Furthermore, it is not possible to accurately predict
how long this method would take in such situations since the
properties of a graph (e.g., the percentage of vertices that are
reachable from a vertex) significantly change as the size of
the graph increases. Therefore, we were not able to present
accurate comparisons between the techniques for these large
graphs. The results in this section are averaged over 10 runs
executed on Quad-Core Xeon E5430 2.67 GHz CPUs.

A. Effectiveness of �-PFS and Pruning

We measured the performance of PFS, �-PFS, and �-
PFS (Pruning). On the graphs constructed from the RI data
set, the completion time of PFS increased by a factor of 339
(from 12 minutes to 67.5 hours) as the graph size varied from
25,000 to 400,000 vertices (Figure 10(a)). On the other hand,
the completion time of PFS increased at a rate of 2,470 (from
1.7 minutes to 69.2 hours) in graphs from the DBLP data
set. The reason is that while all of the vertices in the RI

data set are reachable from each other, the fraction of vertices
reachable from a vertex (i.e., those visited by PFS) increased
substantially (from 10.8% to 60.5%) in the case of the DBLP
data set (see “mean % of reachable vertices” in Figure 9(d)).

As mentioned above, the varying percentage of reachable
vertices in a graph may significantly affect top-k centrality
computation time. In order to illustrate general trends in
performance despite this complexity, Figure 10 shows the
overall completion time as a function of the average number
of reachable vertices in a graph. In each observed case, �-
PFS (Pruning) demonstrated significant performance benefits.

In particular, it outperformed PFS by a factor of 142 (28.6
minutes vs. 67.5 hours) on a graph containing 400,000 vertices
from the RI data set. In this case, while the graph size
was increased by a factor of 16, the running time of �-
PFS (Pruning) only increased by a sub-quadratic factor of 46
(=16

1.38). On the other hand, PFS showed a super-quadratic
increase (339 = 16

2.1) in its completion time.

Figure 11 demonstrates how the benefit of �-PFS varies
significantly depending on the data set. �-PFS without pruning
outperforms PFS by a factor of 3.3 on a graph with 400,000
vertices from the RI data set. On the other hand, �-PFS
reduces execution time by a factor of more than 73.7 in a
graph with 400,000 vertices from the Web data set. In this
graph, each vertex v tends to have a neighboring vertex p
such that many shortest paths from v to other vertices pass
through p (i.e., �-PFS which starts at vertex v and reuses a
search started at p can skip a large number of vertices). As
shown in Figure 9(b), �-PFS skipped up to 99% of vertices
in the graphs obtained from the Web data set (see “savings by
�-PFS”).

In highly connected graphs (e.g., graphs from the RI

data set), our pruning technique can obtain a relatively tight
upper bound on the centrality of every vertex and evaluate the
pruning condition along more paths. Therefore, it can proac-
tively skip more vertices, particularly overcoming relatively
few sharing opportunities (Figure 9(a)). Our pruning technique
usually skips more vertices in larger graphs since, as graph size
increases, more paths tend to exist between vertices [20]. In
Figure 9, curves labeled “savings by Pruning” show the actual
percentage of skipped centrality calculations.

B. Cost Analysis

Our technique mentioned in Section V determines the order
of centrality computations and produces an approximate top-k
answer. Our experimental results on the time overhead of this
technique are presented in Section VI-D. Figure 12 shows the
memory utilization of this technique. In all observed cases,
memory utilization increased by a factor of 3 or 4 due to
the use of sketches and the construction of the centrality
computation schedule (Section V). When the schedule is
initially constructed (Figure 7), it has the same size as the
original graph. Its size then decreases as it is optimized
(Figure 8). Given the aforementioned schedule, our technique
performs a series of �-PFS operations (Section III). During
this phase, the memory overhead of keeping the instances of
⇤ (Section III-B) is low (see the curves labeled “stack” in
Figure 12). Furthermore, our technique can keep the memory
utilization under a user-specified bound (Section III-B).

As Figure 10(c) shows, our pruning method incurs negli-
gible computational overhead. In this case, the overall com-
pletion time with pruning did not increase noticeably despite
adversarial conditions for pruning (i.e., there were no signifi-
cant savings by pruning as shown in Figure 9(c)).

C. Impact of Parameters

While we increased the size of the sketches from 4 bytes
to 1,024 bytes, we did not observe noticeable improvement in
the performance of �-PFS (Pruning). However, sketches larger

than 64 bytes incurred perceivable space and time overhead.
Therefore, we use 64-byte sketches.

We examined the impact of k on the overall completion
time. The completion time was minimized when k = 1. As k
increases, the pruning threshold decreases. Thus, our pruning
technique skipped fewer vertices (Figures 13 and 14).

D. Benefits of Approximate Results

Our technique mentioned in Section V-B has the advantage
of producing approximate top-k answers. In contrast to pre-
vious approximation techniques that support only undirected
graphs [11], [13], this technique is applicable to directed
graphs. It also overcomes the limitation of an algorithm by
Kang et al. [12] that cannot support weighted graphs (both
algorithms process unweighted graphs in an identical way).
The delivery times of these approximate results are shown
in Figure 10 (see the curves labeled “approximate”). In each
unweighted graph containing up to 1,000,000 vertices, approx-
imate results were obtained in less than 1.8 minutes. In graphs
from the RI data set, the delivery time was longer since it is
proportional to the network diameter, which is large in real-
world road networks. Given graphs from the Web, Wiki, and
DBLP data sets, 73% of entries in the initial top-k answer were
correct (i.e., remained in the final answer). When approximate
answers were obtained from the RI data set, the answers were
less accurate since the variation in the centrality values was
small (for further details, refer to our technical report [19]).

VII. RELATED WORK

In addition to closeness centrality (Definition 1), re-
searchers have developed several types of centrality metrics
to capture the influence of real-world entities from a different
perspective. For example, the degree centrality of a vertex
refers to the number of edges incident on that vertex [24],
[25]. Another popular centrality metric is PageRank which
assigns relatively high scores to vertices that have connections
to other vertices with a high score [24]. The degree of all
vertices can be computed in O(�V �+ �E�) time by counting the
edges incident on every vertex. In this case, k vertices with the
highest degree centrality can be found in O(�V � ⋅ log k) time
by inserting each vertex into a priority queue and dequeuing
a vertex the lowest degree whenever the queue contains more
than k vertices. It is also known that an appropriate PageRank
value can be obtained for all vertices usually in O(�V � + �E�)
time [26].

The betweenness centrality of a vertex [27], [24], [28] is
defined as:

�
s≠v≠t∈V

�
st

(v)
�

st

(3)

where �
st

is the number of shortest paths from vertex s to
vertex t and �

st

(v) is the number of shortest paths from
s to t which pass through v. While the closeness centrality
of a vertex v can be computed using only one PFS from
v, the betweenness centrality of v requires examining all
shortest paths for all pairs of vertices. Variants of betweenness
centrality, including stress centrality [27], [28] and bridging
centrality [29] share this inherent complexity. Brandes pro-
posed an algorithm which uses Dijkstra’s algorithm repeatedly

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
em

or
y

si
ze

 (
M

B
)

graph data
scheduling
stack

(a) RI

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
em

or
y

si
ze

 (
M

B
)

graph data
scheduling
stack

(b) Web

63 125 250 500 1000
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
em

or
y

si
ze

 (
M

B
)

graph data
scheduling
stack

(c) Wiki

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
em

or
y

si
ze

 (
M

B
)

graph data
scheduling
stack

(d) DBLP

Fig. 12. Memory Utilization during Different Stages in Top-k Query Processing

24.1 66.9 129.7 201.1 338.5

85

90

95

100

mean # of reachable vertices (unit: 1000 vertices)

sa
vi

ng
s

by
 p

ru
ni

ng
 (

%
)

k = 1
k = 10
k = 100
k = 1000

(a) savings by pruning

24.1 66.9 129.7 201.1 338.5
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

k = 1
k = 10
k = 100
k = 1000

(b) completion time

Fig. 13. Impact of k (RI)

2.8 4.7 26.9 85 197.2

35

40

45

50

55

60

65

mean # of reachable vertices (unit: 1000 vertices)

sa
vi

ng
s

by
 p

ru
ni

ng
 (

%
)

k = 1
k = 10
k = 100
k = 1000

(a) savings by pruning

2.8 4.7 26.9 85 197.2
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

k = 1
k = 10
k = 100
k = 1000

(b) completion time

Fig. 14. Impact of k (DBLP)

to compute the betweenness centrality of every vertex in
O(�V � �E� + �V �2 log(�V �)) time and O(�V � + �E�) space [27].

Eccentricity [15] measures the maximum distance from a
vertex to any other vertex. In our preliminary experiments, we
observed that many vertices had identical eccentricity values,
rendering the metric inappropriate in the context of finding k
most central vertices.

Given a graph, k vertices with the highest closeness cen-
trality values can be found by solving the all pairs shortest
paths (APSP) problem and then computing the centrality of
each vertex. The Floyd-Warshall algorithm [8] solves APSP
using dynamic programming in ⇥(�V �3) time and ⇥(�V �2)
space. In dense graphs, the time complexity of APSP has
been reduced to O(�V �3 log

3
log �V � � log

2 �V �) [7]. Johnson’s
algorithm for APSP is faster than the Floyd-Warshall algo-
rithm in sparse graphs [30]. This algorithm runs Djikstra
for each vertex and uses the results to construct a distance
matrix. For this reason, Johnson’s algorithm for APSP runs in
O(�V � �E�+ �V �2 log(�V �)) time and O(�V �2) space. In order to
calculate the closeness centrality of a vertex, only the shortest
distance from that vertex to every other vertex is needed.
Therefore, Johnson’s APSP algorithm can be modified so that
it does not construct a distance matrix, and instead calculates
the closeness centrality of each vertex. This modified algorithm
has a space complexity of only O(�V �+�E�). There are methods
that construct an index for quickly finding the shortest distance
between any pair of vertices [31]. However, computing the
centrality of vertex v by repeatedly finding the shortest distance
from v to every other vertex is known to be slower than doing
the same using Dijkstra’s algorithm [31]. In contrast to these
algorithms, our technique derives unique performance benefits
by sharing data across centrality computations and bypassing
vertices that cannot be in the final answer.

There are also techniques for providing approximate an-
swers to top-k centrality queries. Eppstein and Wang [11] de-
veloped an algorithm that approximates the closeness centrality
of every vertex in a graph. This algorithm first runs Dijkstra on
a small number of randomly selected pivot vertices and then
uses the results to estimate the closeness centrality of every
vertex. This algorithm, however, supports only undirected
graphs since it assumes that the shortest distance from each
vertex v to any other vertex v′ is the same as the shortest
distance from v′ to v. Okamoto et al. [13] extended Eppstein’s
algorithm to provide approximate top-k results. Their method
strives to strike a balance between result accuracy and query
completion time. An approximation technique by Kang et
al. [12] is summarized in Section V-B. In contrast to these
approximation algorithms, our solution supports both directed
and weighted graphs and refines approximate answers until it
finds exact answers at a much higher speed than other methods.

Additionally, algorithms have been devised to efficiently
update the centrality values of vertices as the structure of a
graph changes [32], [33]. In this paper, we focus on the prob-
lem of expediting centrality computation given static graphs.
We reserve as future work the problem of quickly finding
central vertices in the context of dynamic graphs.

The standard approach for processing top-k queries in
database systems is to maintain the current top-k set, from
which a threshold (the least valued object in the set) and
an upper bound on unexamined objects are derived [34]. If
the upper bound on the unexamined objects is lower than the
threshold, the current set is returned as the final answer. Our
approach is similar in that it obtains a threshold from a list of
examined vertices. However, its pruning condition exploits the
structural properties of graphs (Theorem 1), which has high
utility for large graphs (Section VI-A).

VIII. CONCLUSION

In this paper, we proposed a new solution for efficiently
finding k vertices with the highest closeness centrality values in
directed graphs with nonnegative edge weights. By efficiently
updating an upper bound on the centrality of every vertex, our
solution proactively skips vertices that cannot be among the
k most central vertices. Our solution also shares intermediate
results between centrality computations scheduled in a manner
that minimizes the estimated completion time. Evaluations on
real-world data sets show our solution to be, in addition to
having a small memory footprint, a magnitude of one or two
orders faster than other traditional approaches.

We plan to extend our technique to a wider range of graph
problems including the computation of network diameter and
other centrality metrics such as betweenness centrality and
stress centrality. Another future research plan is to develop
a parallel processing framework that will facilitate centrality
computations on large graphs. We also intend to investigate
the adaptability of our algorithms to an environment in which
graph updates are allowed.

REFERENCES

[1] S. Porta, “Street Centrality and Densities of Retail and Services in
Bologna, Italy,” Environment and Planning B: Planning and Design,
vol. 36, no. 3, pp. 450–465, 2009.

[2] C. Kiss and M. Bichler, “Identification of Influencers–Measuring Influ-
ence in Customer Networks,” Decision Support Systems, vol. 46, no. 1,
pp. 233–253, 2008.

[3] D. Bell, J. Atkinson, and J. Carlson, “Centrality Measures for Disease
Transmission Networks,” Social Networks, vol. 21, no. 1, pp. 1–21,
1999.

[4] E. Elmacioglu and D. Lee, “On Six Degrees of Separation in DBLP-DB
and More,” ACM SIGMOD Record, vol. 34, no. 2, pp. 33–40, 2005.

[5] S. A. Macskassy, “Using Graph-Based Metrics with Empirical Risk
Minimization to Speed up Active Learning on Networked Data,” in
Proc. of SIGKDD, 2009, pp. 597–606.

[6] Z. Zhuang, E. Elmacioglu, D. Lee, and C. L. Giles, “Measuring
Conference Quality by Mining Program Committee Characteristics,”
in Proc. of JCDL, 2007, pp. 225–234.

[7] T. Chan, “More Algorithms for All-Pairs Shortest Paths in Weighted
Graphs,” SIAM Journal on Computing, vol. 39, no. 5, pp. 2075–2089,
2010.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. The MIT press, 2001.

[9] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[10] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms,” in Proc. of FOCS, 1984,
pp. 338–346.

[11] D. Eppstein and J. Wang, “Fast Approximation of Centrality,” in Proc.
of SODA, 2001, pp. 228–229.

[12] U. Kang, S. Papadimitriou, J. Sun, and H. Tong, “Centralities in Large
Networks: Algorithms and Observations,” in Proc. of ICDM, 2011, pp.
119–130.

[13] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of Closeness Centrality
for Large-Scale Social Networks,” in Proc. of FAW, 2008, pp. 186–195.

[14] N. Lin, Foundations of Social Research. Mcgraw-Hill, 1976.
[15] W. Stanley and K. Faust, Social Network Analysis: Methods and

Applications. Cambridge University Press, 1994.
[16] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New Dynamic Algorithms

for Shortest Path Tree Computation,” IEEE/ACM Transactions on
Networking, vol. 8, no. 6, pp. 734–746, 2000.

[17] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, “Efficient
Algorithms for Finding Minimum Spanning Trees in Undirected and
Directed Graphs,” Combinatorica, vol. 6, no. 2, pp. 109–122, 1986.

[18] P. Flajolet and G. N. Martin, “Probabilistic Counting Algorithms for
Data Base Applications,” Journal of Computer and System Sciences,
vol. 31, no. 2, pp. 182–209, 1985.

[19] P. Olsen Jr., A. Labouseur, and J.-H. Hwang, “Efficient Top-k Closeness
Centrality Search,” University at Albany – State University of New
York, Technical Report SUNYA-CS-13-01, 2013.

[20] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations,”
in Proc. of SIGKDD, 2005, pp. 177–187.

[21] OpenStreetMap, http://www.openstreetmap.org/.
[22] SNAP, http://snap.stanford.edu/data/.
[23] DBLP, http://dblp.uni-trier.de/xml/.
[24] S. Borgatti, “Centrality and Network Flow,” Social Networks, vol. 27,

no. 1, pp. 55–71, 2005.
[25] L. Freeman, “Centrality in Social Networks: Conceptual Clarification,”

Social Networks, vol. 1, no. 3, pp. 215–239, 1979.
[26] T. Haveliwala, “Efficient Computation of PageRank,” Stanford InfoLab,

Technical Report 1999-31, 1999.
[27] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal

of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.
[28] L. Freeman, “A Set of Measures of Centrality Based on Betweenness,”

Sociometry, vol. 40, no. 1, pp. 35–41, 1977.
[29] W. Hwang, T. Kim, M. Ramanathan, and A. Zhang, “Bridging Central-

ity: Graph Mining from Element Level to Group Level,” in Proc. of
SIGKDD, 2008, pp. 336–344.

[30] D. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Net-
works,” Journal of the ACM, vol. 24, no. 1, pp. 1–13, 1977.

[31] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A Highway-Centric Labeling
Approach for Answering Distance Queries on Large Sparse Graphs,”
in Proc. of SIGMOD, 2012, pp. 445–456.

[32] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung, “QUBE:
a Quick algorithm for Updating BEtweenness centrality,” in Proc. of
WWW, 2012, pp. 351–360.

[33] A. E. Sariyuce, K. Kaya, E. Saule, and U. V. Catalyurek, “Incremental
Algorithms for Network Management and Analysis based on Closeness
Centrality,” CoRR, abs/1303.0422, 2013.

[34] I. Ilyas, G. Beskales, and M. Soliman, “A Survey of Top-k Query Pro-
cessing Techniques in Relational Database Systems,” ACM Computing
Surveys, vol. 40, no. 4, p. 11, 2008.

APPENDIX A
PFS AND �-PFS ALGORITHMS

Algorithm 4 shows the PFS method mentioned in Sec-
tion III-B. It extends Dijkstra’s algorithm [9] (lines 4-6 and
9-16) with the addition of updating variables s for centrality
computation (lines 2 and 7) and �

v

for pruning (lines 3 and
8).

Algorithm 5 describes the �-PFS method explained in
Section III-A. It is similar to Algorithm 4 except that it places
vertex v at a level higher than p by w(v, p) (lines 1-2), skips
vertices that are already placed at the target level (lines 15-19),
updates variable s in a more complex way in response to new
vertex visits (lines 10-11) and vertex promotions (lines 13-14),
and logs operations that may need to be undone (lines 3 and
23).

APPENDIX B
CORRECTNESS OF �-PFS

Lemma 2: Given vertices v and p, Algorithm 5 places
every vertex v′ ∈ V

v p

at level ↵
v

+ d(v, v′) where

V
v p

= {v} ∪ {v′ ∈ V
v

∶ d(v, v′) < w(v, p) + d(p, v′)} (4)

Algorithm 4: PFS(v)
input : source vertex v

output : vertex-level map L, sum s of geodesic distances
from p, maximum geodesic distance �v

1 L[v]← 0; // place vertex v at level 0
2 s← 0; // set the sum of distances to 0
3 �v ← 0; // set the maximum distance to 0
4 insert (v,0) into priority queue Q (priority: 0);
5 while �Q� > 0 do

6 (n, l)← remove min(Q); // dequeue argmin(n′,l′)∈Q l

′
7 s← s + l; // add d(v, n) to s

8 �v ←max(�v, l); // update �v if d(v, n) > �v
9 for each vertex v

′ with an edge from vertex n do

10 l

′ ← l +w(n, v′); // level where v

′
can be placed

11 if (L[v′] = null) then // visiting v

′
first time

12 L[v′]← l

′; // place vertex v

′
at level l

′
13 insert (v′, l′) into priority queue Q (priority: l′);
14 else if (l′ < L[v′]) then // shorter path to v

′
15 L[v′]← l

′; // place vertex v

′
at level l

′
16 decrease the priority of v′ to l

′ in Q;

17 return (L, s, �v);

Algorithm 5: �PFS(v, p,L, s, �
p

)
input : source vertex v, previous source vertex p, map L,

sum of distances s, distance upper bound �p

output : vertex-level map L, sum of distances s, previous
levels of vertices ⇤, distance upper bound �v

1 ↵p ← L[p]; // previous level of p (previous top level)

2 ↵v ← ↵p −w(v, p); // new level for v (current top level)

3 insert (v,L[v]) into ⇤ (i.e., log the previous level of v);
4 insert (v,↵v) into priority queue Q (priority: ↵v);
5 s← s +w(v, p)�L�; // add w(v, p) to each distance

6 L[v]← ↵v; // place v at current top level ↵v

7 �v ← �p +w(v, p); // ensure that �v ≥ d(v, v′) for v

′ ∈ Vp
8 while �Q� > 0 do

9 (n, l)← remove min(Q); // dequeue argmin(n′,l′)∈Q l

′
10 if ⇤[n] = null then // visiting n for the first time

11 s← s + (l − ↵v); // add d(v, n) to s

12 �v ←max(�v, l − ↵v); // update �v if d(v, n) > �v
13 else // if n is promoted from ⇤[n] to l

14 s← s − (⇤[n] − l); // subtract promotion distance

15 for each vertex v

′ with an edge from vertex n do

16 l

′ ← l +w(n, v′); // level where v

′
can be placed

17 l

′′ ← L[v′]; // previous level of v

′
18 if (l′′ = null // if visiting v

′
for the first time

19 or l

′ < l′′) then // if v

′
can be promoted

20 L[v′]← l

′; // place vertex v

′
at level l

′
21 set the priority of v′ to l

′ in priority queue Q;
22 if v

′ ∉ ⇤ then

23 add (v′, l′′) to ⇤; // log the prev. level of v

′

24 return (L, s,⇤, �v);

Proof: Since Algorithm 5 places the source vertex v at
level ↵

v

= ↵
v

+ d(v, v), we prove the above for any vertex v′
such that (i) d(v, v′) < w(v, p)+d(p, v′) (i.e., v′ ∈ V

v p

−{v}).
Given the aforementioned v′, consider a shortest path

v → v1 → v2 → � → v
k

from v to v′ = v
k

(i.e.,∀i ∈ [1, k], d(v, v′) = d(v, v
i

) + d(v
i

, v′)). If d(v, v
i

) =
w(v, p) + d(p, v

i

), then d(v, v′) = d(v, v
i

) + d(v
i

, v′) =

�w(v, p) + d(p, v
i

)� + d(v
i

, v′) = w(v, p) + �d(p, v
i

) +
d(v

i

, v′)� ≥ w(v, p)+d(p, v′), which contradicts (i). Therefore,
(ii) any shortest path v → v1 → v2 → �→ v

k

from v to v′ = v
k

has the property that ∀i ∈ [1, k], d(v, v
i

) < w(v, p) + d(p, v
i

).
Let us prove by induction that Algorithm 5 places v′ at

level ↵
v

+ d(v, v′). First, when v is dequeued (line 9) and
then v1 is examined (lines 15-23), v1’s target level value (l′ =
↵

v

+ w(v, v1) = ↵v

+ d(v, v1); line 16) must be smaller than
its previous level value (l′′ = ↵

p

+ d(p, v1); line 17) since
↵

v

+ d(v, v1) = �↵p

− w(v, p)� + d(v, v1) = ↵p

+ �d(v, v1) −
w(v, p)� < ↵

p

+ d(p, v1) by (ii). Thus, v1 must be promoted
to level ↵

v

+ d(v, v1) (lines 19 and 20) and then enqueued
(line 21). Second, when v

i

(i ∈ [1, k − 1]) is dequeued and
then v

i+1 is examined, v
i+1 must be promoted, as in the case

of v1, from its previous level (↵
p

+ d(p, v
i+1)) to a new level

(↵
v

+d(v, v
i+1)) and then enqueued, unless the same was done

earlier along a different shortest path from v to v
i+1. For this

reason, v′ = v
k

is always placed at level ↵
v

+ d(v, v′).
Lemma 3: Algorithm 5 skips (i.e., does not follow the

outgoing edges of) every vertex v′ ≠ v such that d(v, v′) =
w(v, p) + d(p, v′).

Proof: The level l′ of vertex v′ on line 16 is determined
along a path from v to v′ after v is placed at level ↵

v

. There-
fore, l′ ≥ ↵

v

+d(v, v′). On line 17, the initial value of l′′ (i.e.,
the previous level of v′ ∈ V

p

) is ↵
p

+d(p, v′) = �↵
v

+w(v, p)�+
d(p, v′) = ↵

v

+ �w(v, p)) + d(p, v′)� = ↵
v

+ d(v, v′) ≤ l′. In
this case, Algorithm 5 skips v′ since the conditions on lines
18 and 19 do not hold.

Theorem 2: (Correctness of �-PFS) Given vertices v and
p, a map L ∶ V

p

→ R such that L[v′] = L[p] + d(p, v) for
each v′ ∈ V

p

, and s = ∑
v

′∈Vp
d(p, v′), Algorithm 5 updates

L and s so that L[v′] = L[v] + d(v, v′) for all v′ ∈ V
v

and
s = ∑

v

′∈Vv
d(v, v′).

Proof: By Lemma 2, for all v′ ∈ V
v p

, L[v′] = ↵
v

+
d(v, v′) = L[v]+ d(v, v′). If v′ ∈ V

v

−V
v p

, since Algorithm 5
skips v′ (Lemma 3), L[v′] keeps the previous level of v′
(i.e., ↵

p

+ d(p, v′)). Thus, L[v′] = ↵
p

+ d(p, v′) = �↵
v

+
w(v, p)� + d(p, v′) = ↵

v

+ �w(v, p) + d(p, v′)�. Furthermore,
since v′ ∉ V

v p

, d(v, v′) = w(v, p) + d(p, v′). Therefore,
L[v′] = L[v] + d(v, v′). The reason for preserving the above
property of s is explained in Sections III-A and III-B.

APPENDIX C
TIME COMPLEXITY OF �-PFS

Algorithms 4 and 5 have the following computational
complexity:

Theorem 3: (Computational Overhead) Algorithm 4 takes
O(�E

v

� + �V
v

� log �V
v

�) time and Algorithm 5 takes O(�E
v p

� +�V
v p

� log �V
v p

�) time, where V
v

, E
v

, V
v p

and E
v p

are defined
as in Table I. For unweighted graphs, the running times of
Algorithms 4 and 5 can be reduced to O(�E

v

� + �V
v

�) and
O(�E

v p

� + �V
v p

�), respectively.

Proof: Algorithm 4 performs lines 1-4 once, lines 5-8 �V
v

�
times, and lines 9-16 at most �E

v

� times. If Q is implemented as
a Fibonacci heap [10], lines 4, 13, 16 complete in constant time
whereas line 6 takes O(log �V

v

�) time. Given an unweighted

graph, a FIFO queue implementation of Q suffices and can
perform line 6 in constant time. The other lines in Algorithms 4
take constant time.

Algorithm 5 runs lines 1-7 once, lines 8-14 up to �V
v p

�
times (Lemma 2), and lines 15-23 at most �E

v p

� times. Lines
4 and 21 complete in constant time whereas line 9 takes
O(log �V

v p

�) time. The rest of the proof is the same as that
for Algorithm 4.

