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SUMMARY

This paper presents a new semantically-based metric for object-oriented systems, called the Semantic
Class Definition Entropy (SCDE) metric, which examines the implementation domain content of a class
to measure class complexity. The domain content is determined using a knowledge-based program
understanding system. The metric’s examination of the domain content of a class provides a more direct
mapping between the metric and common human complexity analysis than is pessible with traditional
complexity measures based on syntactic aspects (software aspects related to the format of the code).
Additionally, this metric represents a true design metric that can measure complexity early in the life cycles
of software maintenance and software development. The SCDE metric is correlated with analyses from a
human expert team, and is also compared to syntactic complexity measures. Copyright © 2002 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Not long ago software engineers wrote most code in a traditional manner, first identifying the problem,
then breaking it down into various functions. Recently the object-oriented (OO) paradigm for code
development has been shown to reduce faults and improve reusability [i]. OO software is also
considered easier to maintain [2]. Over the past 15 years, there have been tremendous increases in
the amount of OO code produced. With OO software, what a system does is expressed in terms of
interacting ‘objects’ and classes of objects, each of which provides many services. The collection
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/* Code Segment #1 */
Test [--cnt] ->test =
vall[input count++].counter + val2[tmp count--]->mycount;

/* Code Segment #2 */

temp = valllinput count].counter + val2[tmp count]-
>mycount ;

input count++;

tmp count--;

--¢nt;

Test [ent] ->test =temp;

Figure 1. Example of multiple tasks specified in a single line of source code.

of services that a software system provides defines the overall system capabilities. OO software has
several characteristics not found in functionally-oriented software. These include:

e objects are encapsulated;

e inheritance allows a subclass of an existing class to supply additional or specialized functionality
while reusing the inherited functionality of the ancestor class; and

e parametric polymorphism allows objects to respond to similar commands in different ways.

Due to these OO software characteristics, various metrics suites targeted specifically toward OO
software have been developed [3-5]. However, all these OO metrics are defined and calculated using
only syntactic aspects of OO software—that is, using only software aspects related to the format of the
code or design. Indeed, earlier functionally-oriented metrics were also calculated using only syntactic
information. All syntactically-based metrics have the problem that mapping from the metric to the
quality the metric purports to measure, such as the software qualities ‘complexity’ and ‘cohesion’, is
indirect, and often arguable.

2. EXAMPLES OF PROBLEMS WITH SYNTACTIC METRICS

Although size and complexity are truly two different aspects of software, traditionally various size
metrics have been used to help indicate complexity. One traditional syntactic metric for measuring the
software quality ‘complexity’ is the lines of code metric. The argument is that software with more lines
of code is more complex than software with fewer lines of code. However, this metric has deficiencies.
Depending on how the metric is counted, a software component could vary in complexity: some lines
of code metrics include comments in the count, whereas other lines of code metrics do not. A more
insidious problem is that some programmers will do several tasks in a single line of code, whereas other
programmers will do the same tasks on separate lines. A simple example of this (in the C++ language)
is shown in Figure 1.

These two code segments do almost exactly the same thing. (The only difference is that, in Code
Segment #2, a temp variable is used.) Most lines of code metrics would count Code Segment #1 as one
line of code, and would count Code Segment #2 as five lines of code. Another, similar metric (number
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of semicolons metric), would also count the two code segments as quite different in complexity.
Note that for readability, Code Segment #2 might in some cases be preferable to Code Segment #1.

Similar examples are available for most existing metrics. In the OO metrics world, consider the
Lack of Cohesion in Methods (LCOM) metric [3,5], which measures cohesion—that is, the extent to
which the methods of a class perform the same or related tasks. Etzkorn et al. [] discovered several
limitations with this metric. The basic idea behind LCOM is methods that both access the same member
variable must be performing related tasks. One definition of LCOM is the Li and Henry [$] definition:
‘LCOM = number of disjoint sets of local methods; no two sets intersect; any two methods in the
same set share at least one local instance variable; ranging from O to N; where N is a positive integer.’
The Li and Henry version of the LCOM metric was employed for various comparisons in the study
reported in this paper, because that version of the LCOM metric performed better than the Chidamber
and Kemerer version in earlier studies by Etzkorn et al. [&].

One of the problems that Etzkorn et al. [5] found with this metric is that the metric can fail to
correctly reflect the cohesion of the class when the constructor or destructor functions are used in the
method count, depending on how the constructor or destructor is written. If the constructor is used
to initialize all the member variables (attributes) in the class, then this metric fails, since each other
method in the class will be considered to be cohesive with respect to the constructor function (since
they use some of the same member variables). Since the constructor is then cohesive with respect to
each method in the class separately, all methods are cohesive with each other, and the class has a
maximal cohesion rating, even though the methods themselves may have no tasks in common. Other,
similar problems have also been found with the LCOM metric [7--%]. Other syntactic cohesion metrics
can be shown to have similar problems [ {{}].

Since different structural aspects of code can result in different metrics values, even when the code
is performing the same task, syntactic metrics are not always accurate descriptors of quality. Metrics
that provide a better mapping between the software and its associated quality factors thus have the
potential to be used in improving software quality, including the quality of newly developed software
as well as currently maintained software. Additionally, such metrics could aid in the identification of
good potentially reusable software components.

3. PREVIOUS USE OF ENTROPY-BASED SOFTWARE METRICS

In the past, various metrics based on the concept of entropy, which is extensively used in the area
of information theory (communications) to estimate the content of messages, have also been shown
to be useful in evaluating procedural software’s code complexity [1i--1{]. Chapin [17] showed that
entropy (as a measure of message flow) can be used as a software maintenance metric. More recently,
entropy has also been applied to OO design complexity [ 1%]. Early versions of software entropy metrics
were very syntactically-related. For example, Davis and Leblanc, and, separately, Harrison used the
empirical distribution of operators to compute code entropy in procedural programs, where ‘operators’
were defined to be either a special symbol (mathematical operators), a reserved word, or a function
call [11,12]. Berlinger [{3] and Kim et al. [15] also used entropy as a syntactic complexity measure.
More recently, Bansiya et al. [ 18] replaced the ‘operators’ with ‘name-strings’ as the basic source of
information for the entropy design metric, where name-strings were user-defined names of classes,
data declarations, methods, and parameters in class definitions. This was more semantically-related in
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that user-defined name-strings were used instead of program operators. However, the entropy metric of
Bansiya et al. [18] made no distinction between name-strings that were related to the implementation
domain (high-level work area for which the software is solving a problem), and name-strings that were
related to the code alone. For example, a name-string such as ‘linked_list,” if within the list of class
attributes, would have been included in the entropy calculation, even though it was related strictly to
the code and not to the implementation domain.

4. CODE-RELATED AND DOMAIN-RELATED INTERNAL DOCUMENTATION

There is a conceptual leap between code-related information (looking only at the computer code
itself) and internal-documentation-related information (looking at comments and identifiers within the
software). By looking at the code alone, without looking at the related comments and identifiers (names
of variables, functions, and classes, etc.), the programmer-analyst can tell that the code provides a
linked list. By looking at the comments and identifiers, the programmer-analyst can tell that this code
handles employee records. This has been discussed by Biggerstaff et al. [{5] as part of a discussion
relating the examination of code alone to the examination of both the code and the code internal
documentation, consisting of comments and identifiers. However, this conceptual leap also occurs
within internal documentation itself, considered separately from the code. Using the same example
as before, code-related name strings and/or comments will inform the reader that the code provides a
linked list. However, name-strings and/or comments related to the implementation domain will inform
the reader that the code provides handling of employee records.

Thus, even when considering only information drawn from internal software documentation
(comments and identifiers), without looking at the imperative computer code, the complexity of
software can be considered to exist in two different forms.

e Programming information. The complexity of the code itself which includes the complexity
of the algorithm, and the complexity of the data structures involved. When considering only
internal software documentation, this code complexity is reflected by comments and identifiers
describing the operation of the code.

e Domain information. The complexity of the task that the code performs within a domain.
This can be re-stated as the human-level complexity of the task within the context of the overall
problem area. This information is also described by internal software documentation.

In the best situation for measurement of complexity with syntactic metrics, there would be a one-to-
one correspondence between code complexity and domain-task complexity, in that the most efficient
known algorithm and data structures would always be selected for a given task. In this case, as is
true in many simple cases, measuring the syntactic code complexity would give a good indication of
domain-task complexity. However, even in very simple situations, examples can be found that violate
this one-to-one correspondence [ i}]. Consider the case of a SORT problem. Many different SORT
routines are available, with order of magnitude of execution differences ranging from logs n to n?.
From this it can be seen that it is possible to change the code complexity while retaining the same
domain-task complexity. The domain-, or human-level-, task complexity basically would require the
data to be placed in, for example, ascending order, without considering how this was achieved.

Copyright © 2002 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2002; 14:293-310



A SEMANTIC ENTROPY METRIC 297

In general, most complexity analyses performed by human beings would include aspects of both
code complexity and implementation-domain complexity. Brooks [Z{}] and Duncan [2}] contend
that human program comprehension includes programming knowledge, domain knowledge, and
comprehension strategies. Therefore a complexity metric that provides a code complexity analysis
of a software component by the use of a syntactic analysis alone will never provide a complete view of
complexity. Thus, a metric that includes an examination of domain-related complexity provides a more
human-oriented view of the complexity of a particular task than does a simple syntactical analysis of
complexity. If syntactic and semantic complexity analyses are performed together, then a complete
view of the complexity of a program can be obtained.

This paper introduces an automated entropy metric, called the Semantic Class Definition Entropy
(SCDE) metric, that measures the complexity of classes in OO software, using domain-related
information from class documentation (comments and identifiers). In addition to providing a more
direct mapping between a complexity measure and the human-oriented view of complexity than is
provided by current syntactically-oriented OO metrics, the version of the SCDE metric introduced here
can also be considered as an OO design metric, since it analyses the class definition alone. This means
that the SCDE metric could be calculated early in the design phase of the development or maintenance
life cycle, prior to the implementation-phase development of method code. This would give developers
an opportunity to eliminate unwanted complexity early in the life cycle, which should significantly
help in reducing rework during and after implementation. The earlier that metrics are applied in a
project’s life cycle, the more control maintainers and developers can exercise over product quality,
cost, and schedule [13]. The SCDE metric can be employed during every software maintenance and
development life cycle.

5. THE SEMANTIC CLASS DEFINITION ENTROPY METRIC
5.1. Domain-related concepts and keywords

The basic unit of measurement for the OO SCDE metric is the class. Classes are used as the units for
entropy measurement since classes represent the most important fundamental building blocks of an OO
system, and are an identifiable abstraction that is present both in designs and implementations. Classes
representing real-world entities, ideas, or concepts are keys to a good OO solution. The complexity
of a design is significantly influenced by the complexity of its classes and the structural relationship
between classes [18].

Bansiya et al. used ‘name-strings’ as the basic source of information for the entropy design metric,
where name-strings were user-defined names of classes, data declarations, methods, and parameters
in class definitions [{8]. The SCDE metric replaces the ‘name-strings’ of Bansiya et al. with ‘the
domain-related concepts and keywords that are identified as belonging to the class’. The domain-related
concepts and keywords for each class are identified, prior to the calculation of the SCDE metric, by
the use of an internal-documentation-related program understanding tool. Two examples of such tools
include the DESIRE (DESign Information Recovery Environment) system [{%], and the PATRicia
(Program Analysis Tool for Reuse) system [22,23]. The SCDE metric, as described in this paper, uses
the domain-related concepts and keywords provided, for each class, by the PATRicia system; however,
a similar program understanding tool could be used instead.
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5.2. PATRicia system background information

The PATRicia system identifies reusable components in OO software [23]. Part of identifying reusable
components requires understanding the functionality provided by a program within a domain of
interest. To understand a program, the PATRicia system uses a unique heuristic approach, deriving
information from the linguistic aspects of comments and identifiers, and from other non-linguistic
aspects of OO software, such as a class hierarchy. The module of the PATRicia system that handles
program understanding and information extraction is called CHRiS (Conceptual Hierarchy for Reuse
including Semantics). When analysing comments, CHRIiS first completely parses a sentence using
a simple natural language parser, then uses its inference engine to semantically process the various
parses. In the case of identifiers, CHRIiS uses empirical information on common formats for variable
and function identifiers to syntactically tag subkeywords.

CHRIiS employs a weighted, hierarchical semantic network (a structure that represents knowledge
as a pattern of interconnected nodes and arcs) in which lower-level concepts—in this case conceptual
graphs—can infer higher-level concepts. Inference in the semantic network occurs through a form
of spreading activation, where active nodes spread to, or infer, surrounding nodes. Natural language
tokens from comments and identifiers are applied to an interface layer of the semantic net, which
consists of syntactically tagged keywords, and from this layer inference proceeds to the rest of the
semantic net.

The semantic network is itself OO, being implemented as objects and messages in the expert system
shell of CLIPS version 6.0. In CHRIiS, a concept—anything appropriate to the domain that can be
represented in a conceptual graph—is implemented as one or more CLIPS objects. When a concept is
asserted, weighted messages are sent from that concept to surrounding concepts, and a comparison of
the weights provides an inferencing mechanism. The CHRiS module of the PATRicia system has been
satisfactorily validated [33].

CHRIS produces (among other reports) a concept report that identifies the concepts and keywords
that have been found in each examined class. These concepts and keywords from this report are used
in the calculation of the SCDE metric. Figure & shows a CHRIiS concept report for GnCommand
(Class #15), drawn from the GINA GUI package [24]. This report shows the keywords from the
knowledge base that have been identified as belonging to the class, along with the part of speech
of the keyword, and the number of times that keyword was detected in the class. It shows the concepts
(from within interior conceptual graphs) that have been inferred by the CHRIS inferencing engine as
being associated with the class. There are two different versions of CHRIS, one that includes inherited
concepts in the class report, and one that does not include inherited concepts. The report shown in
Figure 2 does not include inherited concepts.

5.3. Definition of the SCDE metric

The basic unit of information for the SCDE metric is the domain (human-level) related concepts
or keywords occurring within the class definition that are identified by the PATRicia system (or, as
noted earlier, other internal-documentation-based program understanding systems) as belonging to
the implementation domain. Through the rest of this discussion, this basic unit of information just
described will be referred to as domain-related concepts or keywords. A domain-related keyword is
a word extracted from the comments and identifiers of a class that has been shown to appear in the
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Class GnCommand

command (adjective,usage adjective) found
1 time(s)
command {(adjective,usage adjective) found
1 time(s)

Class GnCommand

object, with weight 0.000000,
inferenced 1 time(s),

at location(s) GnObject found

Facts are:
"GUI item that can be placed, hid,
redrawn, scaled, etc."

Figure 2. CHRIS report for GnCommand.

implementation-domain knowledge base. A domain-related concept is a higher-level concept, found in
the implementation-domain knowledge base, that has been inferred from the presence of related lower-
level keywords or concepts, during the inferencing portion of the program understanding tool operation
(in this case, during operation of the PATRicia system). Figure 2 provides an example description of
keywords and concepts: ‘command (adjective, usage adjective)’ is a keyword whereas ‘object, with
weight. ..’ is a concept.

The amount of information conveyed by each of the domain-related concepts or keywords
(a sequence of alphabetic characters), S;, is inversely related to its probability (P) of occurring
P(S;) = P;. Harrison [12] has formalized that the amount of information /;, in bits conveyed by
a single alphabetic string (in this case a domain-related concept or keyword) S;, with probability of
occurrence P;, is

]i = _]ngpi (1)

and that information is additive, i.e. the information conveyed by two domain-related concepts or
keywords is the sum of their individual information content.

The probability, P;, of the ith most frequently occurring domain-related concept or keyword is equal
to the percentage of total domain-related concept or keyword occurrences it contributes, that is

p= @

N1
where N1 is the total number of (non-unique) domain-related concepts or keywords identified as
belonging to a class based on information from the class definition and class hierarchy, and f; is
the number of occurrences of the ith most frequently occurring domain-related concept or keyword
identified as belonging to the class based on information from the class definition and class hierarchy.

Thus, the average amount of information contributed by each domain-related concept or keyword in

a class definition is given by
N1

H=-Y (Plog, P) 3)
i=1
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class GnMouseDownCommand

friend class
friend class
friend class
friend class

public GnCommand {
KvView;

GnView;

GnApplication;

GnDocument ;

protected:
int start x;
int start y;
int last x;
int last y;
GnTimer *timer;
Boolean mouse already moved;
private:
META DEF_1 {GnMouseDownCommand, GnCommand) ;
public:
/* Constructors: */
GnMouseDownCommand { GnDocument *,
start x, int start y );
“GnMouseDownCommand () ;

GnView *, int

// Submit mouseDownCommand to framework
virtual void submit () ;

virtual char *name() {
return { "MouseDownCommand") ; };

protected:
virtual void
virtual void
Boolean clear) ;
virtual void

constrain mouse (int &x, int &y);
draw feedback (int x, int vy,

track mouse (int x, int vy,
Boolean started = FALSE,
Boolean finished =TRUE) ;

mouse idle ( int x, int y );
not_submitted ();

scroll before redo ();

virtual void
void

void

virtual
virtual

int hysteresis() { return(2); };

int auto scrolling() { return(True); };
int idle timeout () { return(250); };
Boolean call doit() { return(True); };

virtual
virtual
virtual
virtual

void
*timer) ;
void
public:
void

handle timeout (caddr t client data, GnTimer
idle action () ;
moticn notify {(int x, Boolean
finished =FALSE) ;

void button release (

protected:
get last x()
get last y{)

int vy,
int x, int y );

{ return last x; }
{ return last y; }

Figure 3. Statement of the class GnMouseDownCommand.
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Keywords Recognized by Knowledge-Base

command (adjective)

command (noun)

down (adjective)
mouse
down (adverb)

Concepts Inferenced by Knowledge-Base

mouse,
move_mouse_up,
mouse_event,
move_mouse_down,
track,

down

fi=1
fi=1
fi=1
fi=1
fi=1
fi=1
fi=2
fi=3
fi=3
fi=1
fi=1

N1 = total # of non-unique occurrences

N1 (keywords) =5 , N1 (concepts) =11, N1 overall = 16

nl = total # of unique occurrences
nl (keywords) =5, nl (concepts) =6, nl overall =11

SCDE overall SCDE keywords only SCDE concepts only
1/16 1/5 1/11
1/16 1/5 2/11
1/16 1/5 3/11
1/16 1/5 3/11
1/16 1/5 1/11
1/16 1/11
2/16
3/16
3/16
1/16
1/16
SCDE is 3.28 SCDEa is 2.32 SCDEDb is 241

Figure 4. Calculation of SCDE, SCDEa (keywords only), and SCDEDb (concepts only).

where n1l is the total number of (unique) domain-related concepts or keywords identified as being

associated with a class definition.

This shall be referred to as the semantic empirical object-class definition entropy. The entropy
is computed on a per-class basis with n1 being the number of unique (vocabulary) domain-related
concepts or keywords identified as belonging to a class based on information from the class definition.
This frees the computation of the SCDE metric from dependence on the overall size of the project.

Copyright © 2002 John Wiley & Sons, Ltd.
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A larger value of n1 implies that a larger amount of domain knowledge is required to understand the
class. This directly translates to more complexity. Since we are interested in human-level complexity
within an implementation domain, we define complexity as a measure of the effort required to learn,
understand, and implement a class within the implementation domain. Accordingly, a class with a
larger SCDE metric is going to be more complex than a class with a smaller SCDE metric. The SCDE

metric is defined as
N1 f; f;

i=1

~—

where: n1 is the number of unique domain-related concepts or keywords; N1 is the total number of
(non-unique) domain-related concepts or keywords; f;, 1 <i < nl, is the frequency of occurrence of
the ith domain-related concept or keyword.

In addition to the general form of the SCDE metric, there are two other forms of this metric, called
SCDEa and SCDEDb. Both are calculated in the same way as the SCDE metric, except that for SCDEa
only the domain-related keywords are used in the metric calculation, while for SCDEDb only the domain-
related concepts (derived from the knowledge-based inference engine from the keywords) are used in
the metric calculation. Class GnMouseDownCommand is shown in Figure 3 [24]. Figure ¢ shows an
example calculation of SCDE, SCDEa, and SCDED for class GnMouseDownCommand

6. VALIDATION OF THE SEMANTIC CLASS DEFINITION ENTROPY METRIC
6.1. First experiment

The first experiment performed compared the three SCDE metrics to five other syntactic OO software
metrics. All of the metrics were calculated over a set of 68 classes, including several different class
hierarchies, drawn from two C++ Mathematical packages, NEWMATO08 [15] and MFLOAT [2§],
and from three GUI packages, GINA [24], wxWindows [27], and Watson [28]. The five comparison
syntactic metrics included the Weighted Methods per Class (WMC) metric [ 3], which we calculated in
the manner proposed by Li and Henry as the sum of the McCabe’s cyclomatic complexity values for
the methods of a class []. It also included the number of attributes in a class, the number of methods in
the class (this is the WMC metric with the complexity of each method set to 1), the number of external
variable accesses, and the number of message sends.
The null and alternate hypotheses for the first experiment were:

e Hip: p = 0 (null hypothesis)—there is no significant correlation between the specified SCDE
metric and the specified syntactic OO metric;

e Hia: p # 0 (alternative hypothesis)—there is significant correlation between the specified
SCDE metric and the specified syntactic OO metric.

The Pearson correlation coefficients between the pairs of metrics are shown in Table . Although
the desired strength of correlation required to make decisions based on the data can vary in different
research areas, in addition to using statistical significance, some statistics researchers have attempted
to make a general definition or rating of which correlation values can be considered good correlation
values versus which correlation values can be considered poorer correlation values. Assuming a
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Table I. Correlations of SCDE metrics with five syntactic OO metrics.

No. of external

No. of message variable No. of methods ~ No. of attributes
WMC sends accesses in the class in the class
SCDE 0.235 0.169 0.381 0.230 0.305
p-value = 0.393  p-value = 0.502  p-value =0.118 p-value = 0.360  p-value = 0.218
SCDEa 0.774 0.887 0.660 0.354 0.459
p-value = 0.009  p-value = 0.000 p-value = 0.003  p-value = 0.150 p-value = 0.055
SCDEb 0.148 0.062 0.156 0.156 0.232

p-value = 0.627  p-value = 0.808  p-value =0.536  p-value = 0.536  p-value = 0.354

reasonably sized data set, Cohen [2%] holds that a correlation of 0.5 is large, 0.3 is moderate, and
0.1 is small. Hopkins [3{}] calls <0.1 trivial, 0.1 to 0.3 minor, 0.3 to 0.5 moderate, 0.5 to 0.7 large, 0.7
to 0.9 very large, and 0.9 to 1 almost perfect.

Using Hopkin’s correlation ratings, the correlation between SCDEa and WMC, SCDEa and the
number of message sends, and SCDEa and number of external variable accesses was large to very
large, although SCDE and SCDEDb had lower correlations. On this basis, the null hypothesis Hjg, of
no correlation between SCDEa and WMC, is rejected. Thus, it can be reasonably assumed, according
to the alternative hypothesis Hj4, that the SCDEa metric is a predictor of complexity as measured by
WMC.

Similarly, the null hypothesis Hjg, of no correlation between SCDEa and the number of message
sends, is rejected, and the SCDEa metric is a predictor of complexity as measured by the number of
message sends.

Finally, the null hypothesis Hip, of no correlation between SCDEa and the number of variable
accesses, is rejected. Thus according to the alternative hypothesis, the SCDEa metric is a predictor
of complexity as measured by the number of external variable accesses.

The p-values in Table I are generally good when the associated correlation is a higher value, and
poor when the associated correlation is a lower value. Thus the higher correlations, SCDEa and WMC,
SCDEa and the number of message sends, SCDEa and the number of external variable accesses, and
SCDEa and the number of attributes in a class, show a statistically significant correlation at the 95%
confidence level—all had p-values less than 0.05.

6.2. Second experiment

Another experiment was performed that compared the three SCDE metrics and five syntactic OO
software metrics separately with a human-level evaluation of complexity. The evaluation team for
this experiment (Evaluation Team #1) consisted of 15 students in a graduate software engineering
class. They were asked to assess the complexity (as well as other attributes) of a set of classes and
class hierarchies drawn from two C++ Mathematical packages: NEWMATOS [25] and MFLOAT [25].
This included 25 classes drawn from 14 different hierarchies. They also analysed classes drawn from
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drawn from eight class hierarchies. None of the team members were initially familiar with the systems
examined.

All members of Evaluation Team #1 had at least a bachelor degree in computer science or computer
engineering, with an average of over four years of relevant industry experience. Using the group inter-
rater reliability coefficient specified by Law and Sherman [31], which assesses inter-rater agreement,
group inter-rater agreement was checked for this evaluation team, showing some level of inter-rater
agreement for their complexity analyses. Evaluations of complexity by this team showed a sample
variance (S)%) of 0.061, and a random response pattern variance (=2) of 0.125. When T'wg TEpresents
the within-group inter-rater reliability coefficient, which assesses inter-rater agreement, then S)%Ez was
0.619, and ryy = 1 — (52 %?) was 0.381.

The reviewers gave a rating for complexity for each class using the following scale: Excellent, Good,
Fair, Poor, and Unacceptable. When considering numeric ratings, the reviewers were told to assume
that: Excellent = 1.0, Good = (.75, Fair = 0.50, Poor = (.25, Unacceptable = 0.0.

The null and alternate hypotheses for the second experiment were:

e I>y: p = 0 (null hypothesis)—there is no significant correlation between the specified metrics
and the Evaluation Team #1 ratings;

o Ihy: p # 0 (alternative hypothesis)—there is significant correlation between the specified
metrics and the Evaluation Team #1 ratings.

The results from this experiment are shown in Table {{. As this experiment shows, when compared
to a human-oriented analysis of complexity, SCDEa performed equivalently to the number of message
sends and number of external variable accesses metrics, and better than the Li and Henry WMC metric,
over the data examined. This is a useful result, since SCDEa was calculated using information from the
class definition alone, which is available early in the software development cycle, while the number of
message sends metric, the number of external variable accesses metric, and the Li and Henry version
of the WMC metric all require the code for each method to be implemented prior to the calculation
of the metric. SCDEa performed much better than the number of methods in the class metric (this is
the WMC metric with the complexities of all methods set equal to 1) and to the number of attributes
of the class metric. This is important, since those two metrics can also be calculated from the class
definition alone. This result tends to indicate that the SCDEa metric, which can be calculated early in
the software development cycle, is a better predictor of complexity than syntactic metrics which can
also be calculated early in the software development cycle.

Since SCDEa versus the evaluation team has a very large correlation (again using Hopkin’s
correlation ratings) value of 0.774, the null hypothesis H», of no correlation between SCDEa and
Evaluation Team #1, is rejected. Thus it can be reasonably assumed that the SCDEa metric is a
predictor of complexity as would be measured by the evaluation team. The three higher correlations in
Table ii, those of SCDEa, number of message sends, and number of external variable accesses, were
all significant at a greater than 95% confidence level—all had p-values less than 0.05.

The SCDE metric presumably has lower values due to its partial input from concepts, since the
SCDED value, which is calculated totally from concepts, also had lower correlation values than was
achieved using the SCDEa metric. Although it is possible that this is due to a problem with the metric,
this could also be due to a deficiency within the PATRicia system, with respect to this particular data
set of software. Further study is required on this matter. To elaborate on the failure possibilities with
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Table II. Correlations of the Evaluation Team #1 ratings and the specified metrics.

No. of
No. of external No. of No. of Liand
Message  variable methods attributes  Henry
SCDE SCDEa SCDEb sends accesses  in class in class WMC

Evaluation 0.235 0.774 0.148 0.703 0.712 0.114 0.392 0.445
Team p-value  p-value  p-value  p-value  p-value  p-value  p-value  p-value
Complexity =0.349 =0.000 =0.559 =0.001 =0.001 =0.652 =0.108 =0.158

the PATRicia system, however, assume that the PATRicia system’s knowledge base was inadequate in
that it did not have sufficient knowledge or the correct knowledge required to analyze these particular
classes. This is equivalent to having a software engineer or programmer analyze the classes, when that
particular software engineer or programmer is lacking training in the specific area covered by these
classes. In both cases, the PATRicia system with an inadequate knowledge base or a programmer with
insufficient knowledge, the analysis would be less than complete. This is a potential problem with all
knowledge-based systems: they are only as good as their knowledge bases. The PATRicia system was
shown in Etzkorn and Davis [23] to have overall good coverage of the graphical user interface (GUI)
area, but it has not yet been similarly analyzed for other knowledge areas, such as that of mathematical
software packages.

6.3. Third experiment

Finally, a study was performed comparing the SCDE metric to the Class Definition Entropy (CDE)
metric previously defined by Bansiya et al. [18]. This comparison was performed using 17 classes
(drawn from eight class hierarchies) chosen from three GUI packages [24,27,28]. The classes chosen
from each GUI package provide a minimal windowing set within the package. The SCDE values and
the CDE values for these classes, calculated using the PATRicia system, are shown in Table {\. This is
a different set of classes than was used for the second experiment.

In Table 1%, the fact that classes 3, 4, and 17 have zero values for all the SCDE metrics is an
example of the limitations of the knowledge-based analysis: for those classes the PATRicia system
did not recognize any concepts in its knowledge base. A zero SCDEa can also occur when only one
keyword is present (similarly for SCDEDb). From the calculation of the metric, the results are nl = 1,
N1=1,log,(1/1) =0, so SCDEa = 0, and similarly for the SCDEDb calculation.

However, when one keyword is present (so that SCDEa = 0), and one concept is also present (so that
SCDEDb = 0), SCDE is calculated as n1 = 1, N1 = 2 (this is because a keyword is currently counted
as a different entity from a concept in the PATRicia system knowledge base, even when both contain
the same text). This is the reason that classes 1 and 8 have SCDE = 1, while SCDEa = SCDEb = 0.
Hence, SCDEa = —(—0.510g,(0.5)) + (=0.510g,(0.5)) = —(—-0.54+ -0.5) = 1.
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Table III. SCDE, SCDEa, SCDEDb, CDE, and evaluation team ratings for GUI packages.

Evaluation  Evaluation

Class Team #1 Team #2
number Class name SCDE SCDEa SCDEDb ratings ratings CDE
1 wxObject 1.00 0.00 0.00 0.95 0.95 1.49
2 wxTimer 0.00 0.00 0.00 0.94 0.94 1.85
3 wxbTimer 0.00 0.00 0.00 0.99 0.99 2.36
4 wxEvent 0.00 0.00 0.00 0.98 0.98 2.59
5 GnContracts 0.00 0.00 0.00 0.97 0.97 2.88
6 wxMenu 1.00 1.00 0.00 0.50 0.50 2.92
7 GnMouseDownCommand 3.28 2.32 2.41 0.71 0.71 3.05
8 GnObject 1.00 0.00 0.00 0.96 0.96 3.07
9 wxbButton 1.82 1.00 1.24 0.90 0.90 3.16
10 wxButton 1.88 1.00 1.38 0.79 0.79 3.17
11 wxWindow 3.25 1.00 3.05 043 0.43 3.24
12 wxbMenu 2.52 1.00 227 0.86 0.86 3.34
13 wxbWindow 3.17 1.00 2.88 0.89 0.89 3.38
14 wxItem 0.00 0.00 0.00 0.64 0.64 3.40
15 GnCommand 1.00 1.00 0.00 0.92 0.92 3.67
16 wxMouseEvent 2.24 0.00 1.92 0.93 0.93 2.35
17 wxbItem 0.00 0.00 0.00 1.00 1.00 3.48

The SCDE metric and the CDE metric were separately correlated against the ratings provided for
each class by the same evaluation team (Evaluation Team #1) described earlier, as well as an additional
evaluation team (Evaluation Team #2). The evaluators’ ratings of the classes are shown in Table {i}.

Evaluation Team #2 consisted of seven knowledgeable C++ developers. All members of this
evaluation team had degrees in computer science or computer engineering, and had from 5 to 17 years
of experience in software design and development, including 3+ years with C++ and GUI development.
None was initially familiar with the systems examined. The rating system employed was the same used
by Evaluation Team #1 (described in the second experiment above).

The Spearman rank correlation coefficient (calculated using the Minitab statistical software [33]),
rs, was used to test the significance of the correlation between the SCDE metric and the experts, and
between CDE and the experts. Spearman correlation was used here instead of the Pearson correlation
(that was used earlier in this paper) due to the smaller size of the data set. Table {i{} shows the relative
rankings of each of the 17 classes, for the experts, and for each metric analysed.

The null and alternate hypotheses for the third experiment were:

e Hp: p = 0 (null hypothesis)—there is no significant correlation between the specified metric
and the specified evaluation team;

o H3s: p # 0 (alternative hypothesis)}—there is significant correlation between the specified
metric and the specified evaluation team.
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Table IV. Spearman correlations between SCDE, SCDEa, SCDEb, CDE, and
evaluation team ratings.

Evaluation Team #1  Evaluation Team #2

SCDE rs = —0.571 re = —0.640
SCDEa s = —0.642 rs = —0.720
SCDEb rs = —0.509 re = —0.576
CDE rs = —0.240 re = —0.328

The results from this correlation are provided in Table V. All variations of the SCDE metrics values
compared better to each of the evaluation teams than did the CDE values, which tends to indicate
that SCDE is a better calculator of complexity than CDE. Using the Hopkin’s correlation ratings,
all versions of SCDE (SCDE, SCDEa, and SCDEb) have a large to very large correlation with both
evaluation teams, while CDE has a small to moderate correlation with the evaluation teams.

The negative correlations shown in Table {V arise from a scale inversion. For the evaluators a higher
number was a better (i.e. less complex) complexity rating, and a lower number was a lower (i.e. more
complex) complexity rating. For the SCDE metrics, the lower numbers are the better complexity ratings
(i.e. less complex), while the higher numbers are the worse complexity ratings (i.e. more complex).

For a sample size of 17 and a level of significance of 5% (« = 0.05), the Spearman cutoff for failing
to reject Hzg is 0.49 [33]. Since the computed 7 in each of the SCDE correlations is well above the
cutoff, the null hypothesis (H3p), that there is no correlation between SCDE and the evaluation team,
between SCDEa and the evaluation team, and between SCDEb and the evaluation team, is rejected
in each case. Thus it appears that SCDE, SCDEa, and SCDEDb are each a predictor of complexity, as
would be measured by either of the evaluation teams. In Table 1V, the SCDE, SCDEa, and SCDEb
correlations with the evaluation teams’ ratings were significant at the 95% confidence level—all had
p-values less than 0.05.

7. DISCUSSION AND FUTURE RESEARCH TOPICS

Additional validation of these metrics in other domains would be useful, and would provide additional
information about some observations made in this study. As another validation procedure, the three
SCDE metrics should be compared to the ratings provided by human experts who are asked to
separately identify the complexity of the tasks provided by the class in terms of the overall problem
domain, as opposed to the complexity of the code in terms of algorithmic and data complexity.
The current study compared the SCDE metric to ratings provided by human experts who were simply
asked to identify the complexity of the class. In this study, the human experts presumably included both
programming knowledge and domain knowledge in their analysis [2{}], and thus did not differentiate
between the code complexity and the domain-task complexity of a class.
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The validation of the SCDE metrics as domain-task-complexity metrics alone would allow the
separate analysis of domain-task complexity (by use of the SCDE metric) and code complexity (by use
of current syntactic complexity metrics). Comparisons of domain-task complexity to code complexity
could be used in reusability analysis. The domain-task-complexity values could also potentially be
used to determine the level of cohesion of a class.

8. CONCLUSIONS

Over the data sets examined, the SCDEa metric performed as well as or better than syntactic OO
software metrics in comparisons against human-oriented complexity. The SCDEa metric performed
as well as syntactic metrics that require the code to be implemented before calculation, even though
the SCDEa metric was calculated from the class definition alone. The SCDEa metric performed much
better than syntactic metrics that are also calculated from the class definitions alone. The SCDEa metric
performed better than the older CDE metric, which can also be calculated from the class definition
alone.

Since SCDEa can be collected from the class definition alone, it is a true design metric that can be
calculated during the design phase of the software maintenance or development life cycles, before any
code has been implemented. Because, in these statistical studies, the SCDEa metric performed much
better than other design metrics, it can be concluded that the SCDEa metric could provide a better early
indication (in the design phase rather than in the implementation phase) of the design complexity than
has been available before.
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